設(shè)條件p:a>0;條件q:a2+a≥0,那么p是q的什么條件( )
A.充分非必要條件
B.必要非充分條件
C.充分且必要條件
D.非充分非必要條件
【答案】分析:條件q:a2+a≥0,即為a≥0或a≤-1,根據(jù)充要條件的定義即可
解答:解:若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
條件q:a2+a≥0,即為a≥0或a≤-1
故設(shè)條件p:a>0是條件q:a2+a≥0的充分非必要條件
故選A
點評:本題考查了必要條件、充分條件與充要條件的判斷,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過點A(4,0),且被圓C1截得的弦長為2
3
,求直線l的方程;
(II)設(shè)P(a,b)為平面上的點,滿足:存在過點P的兩條互相垂的直線l1與l2,l1的斜率為2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求滿足條件的a,b的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
t
x
(t>0)
和點P(1,0),過點P作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N.
(Ⅰ)設(shè)|MN|=g(t),試求函數(shù)g(t)的表達式;
(Ⅱ)是否存在t,使得M、N與A(0,1)三點共線.若存在,求出t的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù)n,在區(qū)間[2,n+
64
n
]
內(nèi)總存在m+1個實數(shù)a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1:y=2x+m(m<0)與拋物線C1:y=ax2(a>0)和圓C2:x2+(y+1)2=5都相切,F(xiàn)是C1的焦點.
(1)求m與a的值;
(2)設(shè)A是C1上的一動點,以A為切點作拋物線C1的切線l,直線l交y軸于點B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點M在一條定直線上;
(3)在(2)的條件下,記點M所在的定直線為l2,直線l2與y軸交點為N,連接MF交拋物線C1于P,Q兩點,求△NPQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下各個關(guān)于圓錐曲線的命題中
①設(shè)定點F1(0,-3),F(xiàn)2(0,3),動點P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動點P的軌跡是橢圓或線段;
②過點(0,1)作直線,使它與拋物線y2=4x僅有一個公共點,這樣的直線有3條;
③離心率為
1
2
,長軸長為8的橢圓標準方程為
x2
16
+
y2
12
=1
;
④若3<k<4,則二次曲線
x2
4-k
+
y2
3-k
=1
的焦點坐標是(±1,0).
其中真命題的序號為
②④
②④
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線
l
 
1
:y=2x+m(m<0)
與拋物線C1:y=ax2(a>0)和圓C2x2+(y+1)2=5都相切,F(xiàn)是C1的焦點.
(1)求m與a的值;
(2)設(shè)A是C1上的一動點,以A為切點作拋物線C1的切線,直線交y軸于點B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點M在一條定直線上;
(3)在(2)的條件下,記點M所在的定直線為l2,直線l2與y軸交點為N,連接MF交拋物線C1于P,Q兩點,求△NPQ的面積S的取值范圍.

查看答案和解析>>

同步練習冊答案