(1) 已知曲線C (t為參數(shù)), C為參數(shù));疌,C的方程為普通方程,并說明它們分別表示什么曲線;

(2)求兩個圓ρ=4cosθ0, ρ=4sinθ的圓心之間的距離,并判定兩圓的位置關(guān)系。

 

【答案】

 

【解析】求解極坐標(biāo)與參數(shù)方程問題,要能夠熟練應(yīng)用相應(yīng)公式和方法將其轉(zhuǎn)化為直角坐標(biāo)方程,對于所有問題都可以應(yīng)用轉(zhuǎn)化思想,化陌生為熟悉,將問題轉(zhuǎn)化為直角坐標(biāo)方程問題進(jìn)行解決

(1)(5分)     為圓心是,半徑是1的圓。為中心是坐標(biāo)原點,焦點在軸上,長半軸長是8,短半軸長是3的橢圓。

(2)(5分)解: 兩邊同乘以 得 可化為  表示的是以 為圓心,半徑為2的圓。

兩邊同乘以  

 表示的是以   為圓心,半徑為2的圓。

兩員的圓心距為 ,兩圓半徑之和為4,之差為0,

所以兩圓相交。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)已知曲線C的參數(shù)方程為
x=1+2t
y=at2
(t為參數(shù),a∈R),點M(5,4)在曲線C 上,則曲線C的普通方程為
 

(2)已知不等式x+|x-2c|>1的解集為R,則正實數(shù)c的取值范圍是
 

(3)如圖,PC切圓O于點C,割線PAB經(jīng)過圓心A,PC=4,PB=8,則S△OBC
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知曲線C的極坐標(biāo)方程為ρ2=
36
4cos2θ+9sin2θ

(Ⅰ)若以極點為原點,極軸所在的直線為x軸,求曲線C的直角坐標(biāo)方程;
(Ⅱ)若P(x,y)是曲線C上的一個動點,求3x+4y的最大值
(2)已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2+m-1=0

(I)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(II)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆新疆農(nóng)七師高級中學(xué)高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

(共12分)(考生在下面兩題中任選一題解答,若多選則安所做的第一題計分)
選修4—4:坐標(biāo)系與參數(shù)方程
1:已知曲線C的極坐標(biāo)方程是,設(shè)直線的參數(shù)方程是為參數(shù))。  
(1)將曲線C的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(2)設(shè)直線軸的交點是M,N為曲線C上一動點,求|MN|的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年新疆農(nóng)七師高級中學(xué)高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

(共12分)(考生在下面兩題中任選一題解答,若多選則安所做的第一題計分)

選修4—4:坐標(biāo)系與參數(shù)方程

1:已知曲線C的極坐標(biāo)方程是,設(shè)直線的參數(shù)方程是為參數(shù))。  

(1)將曲線C的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;

   (2)設(shè)直線軸的交點是M,N為曲線C上一動點,求|MN|的最大值。

 

查看答案和解析>>

同步練習(xí)冊答案