【題目】用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,反設(shè)正確的是(
A.假設(shè)三內(nèi)角都不大于60度
B.假設(shè)三內(nèi)角至多有一個大于60度
C.假設(shè)三內(nèi)角都大于60度
D.假設(shè)三內(nèi)角至多有兩個大于60度

【答案】C
【解析】解:根據(jù)反證法的步驟,第一步應(yīng)假設(shè)結(jié)論的反面成立,即三角形的三個內(nèi)角都大于60°.
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解反證法與放縮法的相關(guān)知識,掌握常見不等式的放縮方法:①舍去或加上一些項②將分子或分母放大(縮小).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)內(nèi)近似解的過程中得f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間(
A.(1,1.25)
B.(1.25,1.5)
C.(1.5,2)
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:(x+2)8=a0+a1(x+1)+a2(x+1)2+…+a8(x+1)8 , 其中ai=(i=0,1,2…8)為實常數(shù),則a1+2a2+…+7a7+8a8=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的(
A.必要不充分條件
B.充分不必要條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1=12 , 2+3+4=32 , 3+4+5+6+7=52中,可得到一般規(guī)律為 . (用數(shù)學(xué)表達式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a=log0.60.5,b=ln0.5,c=0.60.5 . 則(
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=3x+bcosx,x∈R,則“b=0”是“函數(shù)f(x)為奇函數(shù)”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各函數(shù)中,是指數(shù)函數(shù)的是(
A.y=(﹣3)x
B.y=﹣3x
C.y=3x1
D.y=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題“若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一個是偶數(shù)”時,下列假設(shè)中正確的是(
A.假設(shè)a,b,c不都是偶數(shù)
B.假設(shè)a,b,c都不是偶數(shù)
C.假設(shè)a,b,c至多有一個是偶數(shù)
D.假設(shè)a,b,c至多有兩個是偶數(shù)

查看答案和解析>>

同步練習(xí)冊答案