已知點(diǎn)P(t,m)是函數(shù)y=圖象上的動點(diǎn),過點(diǎn)P作此函數(shù)圖象的切線,切線斜率k是點(diǎn)P橫坐標(biāo)t的函數(shù),記為k=f(t),則函數(shù)k=f(t)在(-1,1)上是

[  ]

A.單調(diào)遞增函數(shù)

B.單調(diào)遞減函數(shù)

C.(-1,0]上增函數(shù),在[0,1)上減函數(shù).

D.(-1,0]上減函數(shù),在[0,1)上增函數(shù).

答案:B
解析:

解:


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦點(diǎn)F2,點(diǎn)A是曲線C1,C2在第一象限的交點(diǎn),且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1,已知點(diǎn)P(1,
3
),過點(diǎn)P作互相垂直且分別與圓M圓N相交的直線l1,l2,設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,
s
t
是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸正半軸上,傾斜角為銳角的直線l過F點(diǎn),設(shè)直線l與拋物線交于A、B兩點(diǎn),與拋物線的準(zhǔn)線交于M點(diǎn),
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點(diǎn)A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點(diǎn)N.已知點(diǎn)P是拋物線C1′上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C′1于T,S,兩點(diǎn),若過N,P兩點(diǎn)的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,以原點(diǎn)為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2).設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天津市新人教A版數(shù)學(xué)2012屆高三單元測試32:直線和圓 題型:022

已知點(diǎn)P(t,t),t∈R,點(diǎn)M是圓上的動點(diǎn),點(diǎn)N是圓上的動點(diǎn),則|PN|-|PM|的最大值是_________

查看答案和解析>>

同步練習(xí)冊答案