【題目】如圖,已知橢圓C的中心在原點(diǎn),其一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)相同,又橢圓C上有一點(diǎn)M(2,1),直線l平行于OM且與橢圓C交于A,B兩點(diǎn),連接MA,MB.

(1)求橢圓C的方程;

(2)當(dāng)MA,MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時(shí),求直線l在y軸上截距的取值范圍.

【答案】見解析

【解析】

解:(1)拋物線y2=4x的焦點(diǎn)為(,0),又橢圓C上有一點(diǎn)M(2,1),

由題意設(shè)橢圓方程為:=1(a>b>0),

解得

∴橢圓C的方程為=1.

(2)∵l∥OMk1=kO M,設(shè)直線在y軸上的截距為m,則直線l:y=x+m.

直線l與橢圓C交于A,B兩點(diǎn).

聯(lián)立消去y得

x2+2mx+2m2-4=0,∴Δ=(2m)2-4(2m2-4)=4(4-m2)>0,

∴m的取值范圍是{m|-2<m<2,且m≠0},

設(shè)MA,MB的斜率分別為k1,k2

∴k1+k2=0,

則A(x1,y1),B(x2,y2),則k1,k2,x1x2=2m2-4,x1+x2=-2m,

∴k1+k2

=0,

故MA,MB與x軸始終圍成等腰三角形時(shí),∴直線l在y軸上的截距m的取值范圍是{m|-2<m<2,且m≠0}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績(jī)作為樣本得到成績(jī)的頻率分布直方圖(見下圖).

(1)的值,并計(jì)算所抽取樣本的平均值同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)填寫下面的列聯(lián)表,能否有超過(guò)的把握認(rèn)為獲獎(jiǎng)與學(xué)生的文理科有關(guān)?

文科生

理科生

合計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

合計(jì)

附表及公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos xsin 2x,下列結(jié)論中正確的是________(填入正確結(jié)論的序號(hào)).

①y=f(x)的圖象關(guān)于點(diǎn)(2π,0)中心對(duì)稱;

②y=f(x)的圖象關(guān)于直線x=π對(duì)稱;

③f(x)的最大值為;

④f(x)既是奇函數(shù),又是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).

(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚?/span>列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的方程為=1(a>b>0),右焦點(diǎn)為F(c,0)(c>0),方程ax2+bx-c=0的兩實(shí)根分別為x1,x2,則P(x1,x2)( )

A.必在圓x2+y2=2內(nèi)

B.必在圓x2+y2=2外

C.必在圓x2+y2=1外

D.必在圓x2+y2=1與圓x2+y2=2形成的圓環(huán)之間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 過(guò)橢圓 的短軸端點(diǎn), 分別是圓與橢圓上任意兩點(diǎn),且線段長(zhǎng)度的最大值為3.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作圓的一條切線交橢圓兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50人測(cè)量身高.據(jù)測(cè)量,被測(cè)學(xué)生身高全部介于155 cm到195 cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165);…;第八組[190,195].如圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180 cm以上(含180 cm)的人數(shù);

)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖(用虛線標(biāo)出高度);

(III)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩人,記他們的身高分別為x、y,求事件“|x-y|≤5”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

積極參加班級(jí)工作

不太主動(dòng)參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

合計(jì)

24

26

50

(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)?并說(shuō)明理由.

參考公式與臨界值表:K2.

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acos θ(a>0),過(guò)點(diǎn)P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點(diǎn).

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案