2.已知關(guān)于x的方程:${log_2}(x+3)-{log_{2^2}}{x^2}=a$在區(qū)間(3,4)內(nèi)有解,則實(shí)數(shù)a的取值范圍是(  )
A.$[{log_2}\frac{7}{4},+∞)$B.$({log_2}\frac{7}{4},+∞)$C.$({log_2}\frac{7}{4},1)$D.(1,+∞)

分析 關(guān)于x的方程log2(x+3)-log22x2=a在區(qū)間(3,4)內(nèi)有解,即方程log2$\frac{x+3}{x}$=log2(1+$\frac{3}{x}$)=a在區(qū)間(3,4)內(nèi)有解,令f(x)=log2$\frac{x+3}{x}$,分析f(x)在區(qū)間(3,4)上的值域,可得答案.

解答 解:關(guān)于x的方程:${log_2}(x+3)-{log_{2^2}}{x^2}=a$在區(qū)間(3,4)內(nèi)有解,
即方程log2(x+3)-log2x=a在區(qū)間(3,4)內(nèi)有解,
即方程log2$\frac{x+3}{x}$=log2(1+$\frac{3}{x}$)=a在區(qū)間(3,4)內(nèi)有解,
令f(x)=log2$\frac{x+3}{x}$=log2(1+$\frac{3}{x}$),則f(x)在區(qū)間(3,4)上為減函數(shù),
故1+$\frac{3}{x}$∈($\frac{7}{4}$,2),
故a∈$({log_2}\frac{7}{4},1)$.
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)零點(diǎn)與方程的根,轉(zhuǎn)化思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在希臘數(shù)學(xué)家海倫的著作《測(cè)地術(shù)》中記載了著名的海倫公式,利用三角形的三條邊長(zhǎng)求三角形面積,若三角形的三邊長(zhǎng)為a,b,c,其面積$S=\sqrt{p(p-a)(p-b)(p-c)}$,這里$p=\frac{1}{2}(a+b+c)$.已知在△ABC中,BC=6,AB=2AC,則△ABC面積的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn),D,E分別是橢圓C的上頂點(diǎn)和右頂點(diǎn),且S${\;}_{△DE{F}_{2}}$=$\frac{\sqrt{3}}{2}$,離心率e=$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過(guò)F2的直線l與橢圓C相交于A,B兩點(diǎn),求$\frac{{|{{F_2}A}||{{F_2}B}|}}{{{S_{△OAB}}}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a∈R,函數(shù)f(x)=x2+(2a+1)x,g(x)=ax.解關(guān)于x的不等式:f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,記$\overrightarrow{m}$=3$\overrightarrow{a}$-2$\overrightarrow$,$\overrightarrow{n}$=2$\overrightarrow{a}$+k$\overrightarrow$
(1)若$\overrightarrow{m}⊥\overrightarrow{n}$,求實(shí)數(shù)k的值;
(2)是否存在實(shí)數(shù)k,使得$\overrightarrow{m}∥\overrightarrow{n}$,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{6}$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{3}$,若$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrowlucur8g$=$\overrightarrow{a}$-$\overrightarrow$,則$\overrightarrow{c}$在$\overrightarrowohj5xe8$上的投影是( 。
A.-$\frac{\sqrt{10}}{5}$B.$\frac{\sqrt{10}}{5}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.有9個(gè)外表看上去一樣的小球,其中8個(gè)重10克,1個(gè)重9克,現(xiàn)有一架天平,問(wèn)至少稱2次可以確保把輕球挑出來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在數(shù)列{an}中,a1=1,an+1=3an+2n-1,則數(shù)列{an}的前100項(xiàng)和S100為(  )
A.399-5051B.3100-5051C.3101-5051D.3102-5051

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知圓C:x2+y2-2$\sqrt{3}$x+2y-5=0,則圓中經(jīng)過(guò)原點(diǎn)的最短的弦所在直線的方程為y=$\sqrt{3}x$.

查看答案和解析>>

同步練習(xí)冊(cè)答案