設(shè)函數(shù)f(x)=(x-1)2+blnx,其中b為常數(shù).
(1)當(dāng)b>時(shí),判斷函數(shù)f(x)在定義域上的單調(diào)性;
(2)當(dāng)b≤0時(shí),求f(x)的極值點(diǎn)并判斷是極大值還是極小值;
(3)求證對任意不小于3的正整數(shù)n,不等式<ln(n+1)-lnn<都成立.
【答案】分析:(1)先確定f(x)的定義域,求出f(x)的導(dǎo)函數(shù),進(jìn)而導(dǎo)函數(shù)大于0,可得函數(shù)在定義域內(nèi)單調(diào)遞增;
(2)令f(x)的導(dǎo)函數(shù)等于0,求出此時(shí)符合定義域的解,然后利用這個(gè)解把(0,+∞)分成兩段,討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)f(x)的增減性,根據(jù)f(x)的增減性即可得到函數(shù)的唯一極小值;
(3)確定f(x)在(0,)為減函數(shù),根據(jù)當(dāng)n≥3時(shí),0<1<1+,可得當(dāng)n≥3時(shí),恒有l(wèi)n(n+1)-lnn>;令函數(shù)h(x)=(x-1)-lnx(x>0),則x∈[1,+∞)時(shí),h(x)為增函數(shù),由此可知結(jié)論成立.
解答:(1)解:由題意知,f(x)的定義域?yàn)椋?,+∞),f′(x)=
∴當(dāng)b>時(shí),f'(x)>0,函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增;
(2)解:當(dāng)b≤0時(shí),f′(x)=0有兩個(gè)不同解,,
≤0,,∴舍去x1,
此時(shí) f'(x),f(x)隨x在在定義域上的變化情況如下表:
x(0,x1x2(x2,+∞)
f′(x)-+
f(x)極小值
由此表可知:b≤0時(shí),f(x)有惟一極小值點(diǎn)
(3)證明:由(2)可知當(dāng)b=-1時(shí),函數(shù)f(x)=(x-1)2-lnx,此時(shí)f(x)有惟一極小值點(diǎn):x=
且x∈(0,)時(shí),f'(x)<0,f(x)在(0,)為減函數(shù).
∵當(dāng)n≥3時(shí),0<1<1+
∴恒有f(1)>f(1+),即恒有0>-ln(1+)=-[ln(n+1)-lnn].
∴當(dāng)n≥3時(shí),恒有l(wèi)n(n+1)-lnn>
令函數(shù)h(x)=(x-1)-lnx(x>0)則h′(x)=
∴x>1時(shí),h′(x)>0,又h(x)在x=1處連續(xù),
∴x∈[1,+∞)時(shí),h(x)為增函數(shù)
∵n≥3時(shí),1<1+,∴h(1+)>h(1),即
∴l(xiāng)n(n+1)-lnn=ln(1+)<
綜上,對任意不小于3的正整數(shù)n,不等式<ln(n+1)-lnn<都成立.
點(diǎn)評:本題考查學(xué)生會(huì)利用導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,并根據(jù)函數(shù)的單調(diào)性得到函數(shù)的極值,掌握導(dǎo)數(shù)在最值問題中的應(yīng)用,是一道綜合題,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

同步練習(xí)冊答案