(本題滿分13分)
已知函數(shù)成等差數(shù)列,點是函數(shù)圖像上任意一點,點關(guān)于原點的對稱點的軌跡是函數(shù)的圖像。
(1)解關(guān)于的不等式;
(2)當(dāng)時,總有恒成立,求的取值范圍。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率P與每日生產(chǎn)產(chǎn)品件數(shù)x(x∈N*)間的關(guān)系為P=,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%).
(Ⅰ)將日利潤y(元)表示成日產(chǎn)量x(件)的函數(shù);
(Ⅱ)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)當(dāng)b=0時,若對x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求實數(shù)k的取值范圍;
(2)設(shè)h(x)的圖象為函數(shù)f (x)和g(x)圖象的公共切線,切點分別為(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求證:x1>1>x2;
②若當(dāng)x≥x1時,關(guān)于x的不等式ax2-x+xe+1≤0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某企業(yè)投入81萬元經(jīng)銷某產(chǎn)品,經(jīng)銷時間共60個月,市場調(diào)研表明,該企業(yè)在經(jīng)銷這個產(chǎn)品期間第個月的利潤(單位:萬元),為了獲得更多的利潤,企業(yè)將每月獲得的利潤投入到次月的經(jīng)營中,記第個月的當(dāng)月利潤率,例如:.
(Ⅰ)求; (Ⅱ)求第個月的當(dāng)月利潤率;
(Ⅲ)該企業(yè)經(jīng)銷此產(chǎn)品期間,哪個月的當(dāng)月利潤率最大,并求該月的當(dāng)月利潤率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)設(shè),若方程有兩個均小于2的不同的實數(shù)根,則此時關(guān)于的不等式是否對一切實數(shù)都成立?并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù),在同一周期內(nèi),
當(dāng)時,取得最大值;當(dāng)時,取得最小值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若時,函數(shù)有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在經(jīng)濟學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某公司每月生產(chǎn)x臺某種產(chǎn)品的收入為R(x)元,成本為C(x)元,且R(x)=3 000x-20x2,C(x)=500x+4 000(x∈N*).現(xiàn)已知該公司每月生產(chǎn)該產(chǎn)品不超過100臺.
(1)求利潤函數(shù)P(x)以及它的邊際利潤函數(shù)MP(x);
(2)求利潤函數(shù)的最大值與邊際利潤函數(shù)的最大值之差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com