設函數(shù)f(x)=數(shù)學公式的定義域為集合A,則集合A∩Z中元素的個數(shù)是________.

5
分析:由函數(shù)f(x)=的定義域為集合A,知A={x|3-2x-x2≥0}={x|-3≤x≤1},由此能求出集合A∩Z中元素的個數(shù).
解答:∵函數(shù)f(x)=的定義域為集合A,
∴A={x|3-2x-x2≥0}
={x|x2+2x-3≤0}
={x|-3≤x≤1},
∴A∩Z={-3,-2,-1,0,1},
故集合A∩Z中元素的個數(shù)是5個.
故答案為:5.
點評:本題考查集合的交集及其運算,是基礎題.解題時要認真審題,仔細解答,注意一元二次不等式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2x
2x+
2
的圖象上兩點P1(x1,y1) P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且點P的橫坐標為
1
2
(1)求證:P點的縱坐標為定值,并求出這個定值;(2)若Sn=
n
i=1
f(
i
n
)
,n∈N*,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n項和,若Tn<a(Sn+1+
2
)對一切n∈N*都成立,試求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+
1x+b
(a,b∈Z),曲線y=f(x)在點(2,f(2)處的切線方程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+
1x+b
(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式,并判斷函數(shù)y=f(x)的圖象是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由.
(II)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
(III) 將函數(shù)y=f(x)的圖象向左平移一個單位后與拋物線y=ax2(a為非0常數(shù))的圖象有幾個交點?(說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(x)-t2+t<0對一切x∈(1,4)恒成立,求t的取值范圍;
(Ⅲ)證明:曲線f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為一值,并求此定值.

查看答案和解析>>

同步練習冊答案