【題目】已知的線性回歸直線方程為,且,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的為

A.變量,之間呈現(xiàn)正相關(guān)關(guān)系B.可以預(yù)測,當(dāng)時,

C.D.由表格數(shù)據(jù)可知,該回歸直線必過點

【答案】C

【解析】

A中,根據(jù)線性回歸直線方程中回歸系數(shù)0.820,判斷x,y之間呈正相關(guān)關(guān)系;B中,利用回歸方程計算x5的值即可預(yù)測結(jié)果;C中,計算、,代入回歸直線方程求得m的值;D中,由題意知m1.8時求出,可得回歸直線方程過點().

已知線性回歸直線方程為0.82x+1.27,

0.820,所以變量xy之間呈正相關(guān)關(guān)系,A正確;

計算x5時,0.82×5+1.275.37,即預(yù)測當(dāng)x5y5.37,B正確;

0+1+2+3)=1.5,0.8+m+3.1+4.3,

代入回歸直線方程得0.82×1.5+1.27,解得m1.8,∴C錯誤;

由題意知m1.8時,1.52.5,所以回歸直線方程過點(1.5,2.5),D正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的方程是,).

(1)當(dāng),時,求曲線圍成的區(qū)域的面積;

(2)若直線與曲線交于軸上方的兩點,且,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“我將來要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬的小孩子,附近沒有一個大人,我是說……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對的角為,中邊所對的角為,經(jīng)測量已知,.

1)霍爾頓發(fā)現(xiàn)無論多長,為一個定值,請你驗證霍爾頓的結(jié)論,并求出這個定值;

2)霍爾頓發(fā)現(xiàn)麥田的生長于土地面積的平方呈正相關(guān),記的面積分別為,為了更好地規(guī)劃麥田,請你幫助霍爾頓求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x) 為奇函數(shù).

(1)b的值;

(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);

(3)解關(guān)于x的不等式f(1x2)f(x22x4)0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張卡片分別寫有數(shù)字,從中任取張,可排出不同的四位數(shù)個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線過點,其參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求關(guān)于的回歸直線方程;

(2)若政府不調(diào)控,按照3月份至7月份房價的變化趨勢預(yù)測12月份該市新建住宅的銷售均價.

參考數(shù)據(jù):,

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】食品安全一直是人們關(guān)心和重視的問題,學(xué)校的食品安全更是社會關(guān)注的焦點.某中學(xué)為了加強(qiáng)食品安全教育,隨機(jī)詢問了36名不同性別的中學(xué)生在購買食品時是否看保質(zhì)期,得到如下“性別”與“是否看保質(zhì)期”的列聯(lián)表:

總計

看保質(zhì)期

8

22

不看保持期

4

14

總計

(1)請將列聯(lián)表填寫完整,并根據(jù)所填的列聯(lián)表判斷,能否有的把握認(rèn)為“性別”與“是否看保質(zhì)期”有關(guān)?

(2)從被詢問的14名不看保質(zhì)期的中學(xué)生中,隨機(jī)抽取3名,求抽到女生人數(shù)的分布列和數(shù)學(xué)期望.

附:,().

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的圖象與y=g(x)圖象有且僅有兩個不同的公共點A(x1 , y1),B(x2 , y2),則下列判斷正確的是(
A.當(dāng)a<0時,x1+x2<0,y1+y2>0
B.當(dāng)a<0時,x1+x2>0,y1+y2<0
C.當(dāng)a>0時,x1+x2<0,y1+y2<0
D.當(dāng)a>0時,x1+x2>0,y1+y2>0

查看答案和解析>>

同步練習(xí)冊答案