若橢圓上有個不同的點為右焦點,組成公差的等差數(shù)列,則的最大值為( )
A.199B.200 C.99D.100
B

試題分析:橢圓上的點到右焦點最大距離為:a+c=3,到右焦點最小距離是a-c=1,2=(n-1)d,要使,且n最大,有d=,由此能求出n的最大值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)定圓,動圓過點且與圓相切,記動圓圓心的軌跡為.
(1)求軌跡的方程;
(2)已知,過定點的動直線交軌跡、兩點,的外心為.若直線的斜率為,直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面內(nèi)與兩定點、)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上兩點所成的曲線C可以是圓、橢圓或雙曲線.求曲線C的方程,并討論C的形狀與m值得關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0).
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)過原點O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的焦點與橢圓的焦點重合,且該橢圓的長軸長為,是橢圓上的的動點.
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足:,直線的斜率之積為,求證:存在定點,
使得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點關(guān)于原點對稱,點軸的射影為,連接 并延長交橢圓于
,求證:以為直徑的圓經(jīng)過點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,已知A,B分別為橢圓+=1(a>b>0)的右頂點和上頂點,直線l∥AB,l與x軸、y軸分別交于C,D兩點,直線CE,DF為橢圓的切線,則CE與DF的斜率之積kCE·kDF等于(  )
A.±B.±
C.±D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓C:+=1(a>b>0)的左、右焦點分別為F1,F2,P是C上的點,PF2⊥F1F2,∠PF1F2=30°,則C的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點,線段AB的垂直平分線與x軸相交于點P(t,0),求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案