若α是銳角,則


  1. A.
    sin2α>2sinα
  2. B.
    sin2α<2sinα
  3. C.
    sin2α=2sinα
  4. D.
    sin2α≥2sinα
B
分析:觀察到:四個選項的左端與右端分別相同,只需作差后利用二倍角的正弦公式與正、余弦函數(shù)的性質即可解決問題.
解答:∵α是銳角,
∴sinα>0,0<cosα<1,
∴cosα-1<0,
∴sin2α-2sinα=2sinα•cosα-2sinα=2sinα(cosα-1)<0,
∴sin2α<2sinα.
故選B.
點評:本題考查余弦函數(shù)的定義域與值域及二倍角的正弦,著重考查作差法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:數(shù)學教研室 題型:022

給出下列命題:?

UA={xxA}?②U?③若S={三角形},A={鈍角三角形},則SA={銳角三角形}?④若={12,3},A={2,34},則UA={1}?

其中正確命題的序號是______

 

查看答案和解析>>

科目:高中數(shù)學 來源:黃岡重點作業(yè)·高二數(shù)學(下) 題型:047

如圖所示,過點S引三條直線兩兩垂直,一個平面與這三條直線分別交于A、B、C.求證:

(1)△ABC是銳角三角形;

(2)若△ABC的垂心O是S在平面ABC上的射影,則△SAB的面積為△OAB和△ABC面積的比例中項.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:022

給出下列命題:

A.;

B.;

C.若S={三角形},A={鈍角三角形},則={銳角三角形};

D.若U={1,2,3},A={2,3,4},則={1}.

其中正確命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:

UA={x|xA};

U=U;

③若S={三角形},A={鈍角三角形},則SA={銳角三角形};

④若U={1,2,3},A={2,3,4},則UA={1}.

其中正確命題的序號是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:

(1) A={x|xA};(2) =U;(3)若S={三角形},A={鈍角三角形},則A={銳角三角形};?(4)若U={1,2,3},A={2,3,4},則A={1}.

其中正確命題的序號是_______________.

查看答案和解析>>

同步練習冊答案