(本題滿分15分)已知焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為,為橢圓的左頂點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知過點(diǎn)的直線與橢圓交于,兩點(diǎn).

(。┤糁本垂直于軸,求的大小;

(ⅱ)若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請(qǐng)說明理由.

 

【答案】

(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為,且.

由題意可知:,.           ………2分

所以.            

所以,橢圓的標(biāo)準(zhǔn)方程為.    ………3分

(Ⅱ)由(Ⅰ)得.設(shè).

(。┊(dāng)直線垂直于軸時(shí),直線的方程為.

 解得:

(不妨設(shè)點(diǎn)軸上方).…………5分

則直線的斜率,直線的斜率.

因?yàn)?,

所以 .

所以 .                  …………6分

(ⅱ)當(dāng)直線軸不垂直時(shí),由題意可設(shè)直線的方程為.

消去得:.

因?yàn)?點(diǎn)在橢圓的內(nèi)部,顯然.

               ……………8分

因?yàn)?,,,

所以

.

所以 .                           

所以 為直角三角形.             ………………11分

(III)假設(shè)存在直線使得為等腰三角形,則.

的中點(diǎn),連接,則.

記點(diǎn)

另一方面,點(diǎn)的橫坐標(biāo),

所以 點(diǎn)的縱坐標(biāo).

所以

.

所以 不垂直,矛盾.

所以 當(dāng)直線軸不垂直時(shí),不存在直線使得為等腰三角形.…………13分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題滿分15分)已知點(diǎn)(0,1),,直線、都是圓的切線(點(diǎn)不在軸上).
(Ⅰ)求過點(diǎn)且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(1,0)作直線與(Ⅰ)中的拋物線相交于兩點(diǎn),問是否存在定點(diǎn)使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及常數(shù);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)

已知命題p,命題q. 若“pq”為真命題,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知函數(shù)

(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;

(Ⅲ)當(dāng),且時(shí),證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點(diǎn)A,B,

(1)當(dāng)直線的斜率為1時(shí),求線段AB的長(zhǎng);

(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線對(duì)稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題

(本題滿分15分)已知直線,曲線

   (1)若且直線與曲線恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值;

   (2)若,直線與曲線M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案