函數(shù)f(x)=2+logax(a>0, a≠1)的圖像恒過定點A,若點A在直線mx+ny-3=0上,其中mn>0,則的最小值為           。

 

【答案】

【解析】

試題分析:由題意可得定點,又點在直線上,∴,則 ,當(dāng)且僅當(dāng)時取“=”

所以的最小值為

考點:基本不等式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:湖南省長沙市一中2010屆高三上學(xué)期第二次月考(數(shù)學(xué)理) 題型:022

已知函數(shù)f(x)=,直線l:9x+2yc=0,當(dāng)x∈[-2,2]時,函數(shù)yf(x)圖象恒在直線l的下方,則c的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;

(2)當(dāng)a≥時,函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個公共點?若存在,求出所有a的值;否則,說明理由.

(3)當(dāng)x≥0時,g(x)≥-f(x)+恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).

(1)如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),求實數(shù)m的取值范圍.

(2)如果定義域為R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省高二下期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3-3x及y=f(x)上一點P(1,-2),過點P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點的直線方程;

(2)求使直線l和y=f(x)相切且切點異于P的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設(shè)曲線y=f(x)上任一點處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案