直線L1:A1x+B1y+C1=0與直線L2:A2x+B2y+C2=0 垂直的等價條件是(  )
分析:兩條直線垂直,等價于兩條直線的方向向量的數(shù)量積為0,運算數(shù)量積即可.
解答:解:∵直線L1和L2的方向向量分別為(-B1,A1)和(-B2,A2),
兩條直線垂直,等價于兩條直線的方向向量的數(shù)量積為0,
即:(-B1,A1)•(-B2,A2)=0 可得A1A2+B1B2=0
故選C.
點評:本題考查兩條直線垂直的判定,考查邏輯思維能力,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則
A1
B1
=
A2
B2
是l1∥l2的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、在命題p的四種形式(原命題、逆命題、否命題、逆否命題)中,正確命題的個數(shù)記為f(p),已知命題p:“若兩條直線l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0平行,則a1b2-a2b1=0”.那么f(p)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下表,在相應(yīng)各前提下,滿足p是q的充分不必要條件所對應(yīng)的序號有
 
(填出所有滿足要求的序號).
序號 前提 p q
在區(qū)間I上函數(shù)f(x)的最小值為m,g(x)的最大值為n m>n f(x)>g(x)在區(qū)
間I上恒成立
函數(shù)f(x)的導(dǎo)函數(shù)為f′(x) f′(x)>0在區(qū)間I上恒成立 f(x) 在區(qū)間I
上單調(diào)遞增
A、B為△ABC的兩內(nèi)角 A>B sinA>sinB
兩平面向量
a
b
a
b
<0
a
、
b
的夾角為鈍角
直線l1:A1x+B1y+C1=0l2:A2x+B2y+C2=0
A1B2=A2B1
B1C2≠B2C1
l1∥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題;
①直線x•cosθ-y+1=0(θ∈R)的傾斜角的取值范圍為[
π
4
,
4
];
②直線l1:a1x+b1y+c1=0(a12+b12≠0)與直線l2:a2x+b2y+c2=0(a22+b22≠0),則|
a1a2
b1b2
|=0是直線l1、l2平行的必要不充分條件;
③圓C:x2+y2=r2及點P(x0,y0),若過點P作圓C的兩條切線分別交圓C于A、B兩點,則過AB的直線方程為xx0+yy0=r2
④方程
x2
t-1
+
y2
1-t
=1不可能表示圓;
其中正確命題的序號為
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省補習(xí)學(xué)校聯(lián)合體高三大聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如下表,在相應(yīng)各前提下,滿足p是q的充分不必要條件所對應(yīng)的序號有    (填出所有滿足要求的序號).
序號前提pq
在區(qū)間I上函數(shù)f(x)的最小值為m,g(x)的最大值為nm>nf(x)>g(x)在區(qū)
間I上恒成立
函數(shù)f(x)的導(dǎo)函數(shù)為f′(x)f′(x)>0在區(qū)間I上恒成立f(x) 在區(qū)間I
上單調(diào)遞增
A、B為△ABC的兩內(nèi)角A>BsinA>sinB
兩平面向量、的夾角為鈍角
直線l1:A1x+B1y+C1=0l2:A2x+B2y+C2=0l1∥l2

查看答案和解析>>

同步練習(xí)冊答案