已知lg2=a,lg3=b,則log34的值為( 。
A、
2b
a
B、
2a
b
C、
a
b
D、
b
a
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的性質(zhì)和運算法則求解.
解答: 解:∵lg2=a,lg3=b,
∴l(xiāng)og34=
lg4
lg3
=
2lg2
lg3
=
2a
b

故選:B.
點評:本題考查對數(shù)的化簡求值,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)性質(zhì)和運算法則的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=8x的焦點F的直線交拋物線于A(x1,y1),B(x2,y2)兩點,若x1+x2=5,則|AB|=( 。
A、10B、9C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a>4”是“a2>16”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二項式(2x+
a
x
7的展開式中
1
x3
的系數(shù)是84,則實數(shù)a=( 。
A、2
B、
34
C、1
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c是三角形的三邊長,直線l:ax+by+c=0,M(-1,-1),N(-1,1),P(1,1),1(1,-1).
(1)判斷點M,N,P,Q是否均在直線的同一側(cè),請說明理由;
(2)設(shè)M,N,P,Q到直線的距離和為S,求證:2
2
<S<4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c分別是△ABC中∠A,∠B,∠C所對邊的邊長,則直線sinA•x-ay-c=0與bx+sinB•y+sinC=0的位置關(guān)系是( 。
A、平行B、重合
C、垂直D、相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π+α)=-
3
5
,
5
2
π<α<3π,tan(
π
2
-β)=
12
5
,0<β<
π
2
,求cos(2α-β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若log2(2m-3)=0,則elnm-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)為擴大生產(chǎn)規(guī)模,今年年初新購置了一條高性能的生產(chǎn)線,該生產(chǎn)線在使用過程中的設(shè)備維修、燃料和動力等消耗的費用(稱為設(shè)備的低劣化值)會逐年增加,第一年設(shè)備低劣化值是4萬元,從第二年到第七年,每年設(shè)備低劣化值均比上年增加2萬元,從第八年開始,每年設(shè)備低劣化值比上年增加25%.
(1)設(shè)第n年該生產(chǎn)線設(shè)備低劣化值為an,求an的表達式;
(2)若該生產(chǎn)線前n年設(shè)備低劣化平均值為An,當(dāng)An達到或超過12萬元時,則當(dāng)年需要更新生產(chǎn)線,試判斷第幾年需要更新該生產(chǎn)線,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案