已知點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)M(m,0)、N(0,n)分別是x軸、y軸上的動(dòng)點(diǎn),且滿足.若點(diǎn)P滿足

(1)求點(diǎn)P的軌跡C的方程;

(2)設(shè)過點(diǎn)F任作一直線與點(diǎn)P的軌跡交于A、B兩點(diǎn),直線OA、OB與直線x=-a分別交于點(diǎn)S、T(O為坐標(biāo)原點(diǎn)),試判斷是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:(1)橢圓右焦點(diǎn)的坐標(biāo)為  1分

  

  ,

  ,得  3分

  設(shè)點(diǎn)的坐標(biāo)為,由,有,

  代入,得  5分

  (2)(法一)設(shè)直線的方程為,、,

  則,  6分

  由,得,同理得  8分

  ,,則  9分

  由,得  11分

  則  13分

  因此,的值是定值,且定值為  14分

  (法二)①當(dāng)時(shí),,則,

  由得點(diǎn)的坐標(biāo)為,則

  由得點(diǎn)的坐標(biāo)為,則

    7分

 、诋(dāng)不垂直軸時(shí),設(shè)直線的方程為,,同解法一,得  10分

  由,得,  11分

  則  13分

  因此,的值是定值,且定值為  14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:廣西柳鐵一中2012屆高三第三次月考數(shù)學(xué)理科試題 題型:044

已知點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)M(m,0)、N(0,n)分別是x軸、y軸上的動(dòng)點(diǎn),且滿足.若點(diǎn)P滿足

(Ⅰ)求點(diǎn)P的軌跡C的方程;

(Ⅱ)設(shè)過點(diǎn)F任作一直線與點(diǎn)P的軌跡交于A、B兩點(diǎn),直線OA、OB與直線x=-a分別交于點(diǎn)S、T(O為坐標(biāo)原點(diǎn)),試判斷是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三第一次學(xué)情調(diào)研測(cè)試數(shù)學(xué)試卷 題型:填空題

已知點(diǎn)F是橢圓的右焦點(diǎn),過原點(diǎn)的直線交橢圓于點(diǎn)A、P,PF垂直于x軸,直線AF交橢圓于點(diǎn)B,,則該橢圓的離心率=___▲___.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省泰州中學(xué)高三(下)3月段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知點(diǎn)F是橢圓的右焦點(diǎn),過原點(diǎn)的直線交橢圓于點(diǎn)A、P,PF垂直于x軸,直線AF交橢圓于點(diǎn)B,PB⊥PA,則該橢圓的離心率e=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省臺(tái)州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知點(diǎn)F是雙曲線的右焦點(diǎn),點(diǎn)C是該雙曲線的左頂點(diǎn),過F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABC是銳角三角形,則此雙曲線離心率的取值范圍是( )
A.(1,2)
B.(1,+∞)
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案