已知函數(shù)f(x)=(x2+x-a)e
x
a
(a>0).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x=-5時(shí),f(x)取得極值.
①若m≥-5,求函數(shù)f(x)在[m,m+1]上的最小值;
②求證:對(duì)任意x1,x2∈[-2,1],都有|f(x1)-f(x2)|≤2.
(Ⅰ)f′(x)=
1
a
(x2+x-a)e
x
a
+(2x+1)e
x
a
=
1
a
x(x+1+2a)e
x
a
,
當(dāng)a=1時(shí),f′(x)=x(x+3)ex,
解f′(x)>0得x>0或x<-3,解f′(x)<0得-3<x<0,
所以f(x)的單調(diào)增區(qū)間為(-∞,-3)和(0,+∞),單調(diào)減區(qū)間為(-3,0).
(Ⅱ)①當(dāng)x=-5時(shí),f(x)取得極值,所以f′(-5)=
1
a
(-5)(-5+1+2a)e
x
a
=0
,
解得a=2(經(jīng)檢驗(yàn)a=2符合題意),
f′(x)=
1
2
x(x+5)e
x
2
,當(dāng)x<-5或x>0時(shí)f′(x)>0,當(dāng)-5<x<0時(shí)f′(x)<0,
所以f(x)在(-∞,-5)和(0,+∞)上遞增,在(-5,0)上遞減,
當(dāng)-5≤m≤-1時(shí),f(x)在[m,m+1]上單調(diào)遞減,fmin(x)=f(m+1)=m(m+3)e
m+1
2
,
當(dāng)-1<m<0時(shí),m<0<m+1,f(x)在[m,0]上單調(diào)遞減,在[0,m+1]上單調(diào)遞增,fmin(x)=f(0)=-2,
當(dāng)m≥0時(shí),f(x)在[m,m+1]上單調(diào)遞增,fmin(x)=f(m)=(m+2)(m-1)e
m
2
,
綜上,f(x)在[m,m+1]上的最小值為
fmin(x)=
m(m+3)e
m+1
2
,-5≤m≤-1
-2,-1<m<0
(m+2)(m-1)e
m
2
,m≥0
;
②令f′(x)=0得x=0或x=-5(舍),
因?yàn)閒(-2)=0,f(0)=-2,f(1)=0,所以fmax(x)=0,fmin(x)=-2,
所以對(duì)任意x1,x2∈[-2,1],都有|f(x1)-f(x2)|≤fmax(x)-fmin(x)=2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實(shí)數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案