已知函數(shù)f(x)=x3-3x,若過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,則實(shí)數(shù)m的取值范圍為
(-3,-2)
(-3,-2)
分析:設(shè)切點(diǎn)為(a,a3-3a),利用導(dǎo)數(shù)的幾何意義,求得切線的斜率k=f′(a),利用點(diǎn)斜式寫出切線方程,將點(diǎn)A代入切線方程,可得關(guān)于a的方程有三個(gè)不同的解,利用參變量分離可得2a3-3a2=-3-m,令g(x)=2x3-3x2,利用導(dǎo)數(shù)求出g(x)的單調(diào)性和極值,則根據(jù)y=g(x)與y=-3-m有三個(gè)不同的交點(diǎn),即可得到m的取值范圍.
解答:解:設(shè)切點(diǎn)為(a,a3-3a),
∵f(x)=x3-3x,
∴f'(x)=3x2-3,
∴切線的斜率k=f′(a)=3a2-3,
由點(diǎn)斜式可得切線方程為y-(a3-3a)=(3a2-3)(x-a),
∵切線過點(diǎn)A(1,m),
∴m-(a3-3a)=(3a2-3)(1-a),即2a3-3a2=-3-m,
∵過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,
∴關(guān)于a的方程2a3-3a2=-3-m有三個(gè)不同的根,
令g(x)=2x3-3x2,
∴g′(x)=6x2-6x=0,解得x=0或x=1,
當(dāng)x<0時(shí),g′(x)>0,當(dāng)0<x<1時(shí),g′(x)<0,當(dāng)x>1時(shí),g′(x)>0,
∴g(x)在(-∞,0)上單調(diào)遞增,在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴當(dāng)x=0時(shí),g(x)取得極大值g(0)=0,
當(dāng)x=1時(shí),g(x)取得極小值g(1)=-1,
關(guān)于a的方程2a3-3a2=-3-m有三個(gè)不同的根,等價(jià)于y=g(x)與y=-3-m的圖象有三個(gè)不同的交點(diǎn),
∴-1<-3-m<0,
∴-3<m<2,
∴實(shí)數(shù)m的取值范圍為(-3,2).
故答案為:(-3,-2).
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程.導(dǎo)數(shù)的幾何意義即在某點(diǎn)處的導(dǎo)數(shù)即該點(diǎn)處切線的斜率,解題時(shí)要注意運(yùn)用切點(diǎn)在曲線上和切點(diǎn)在切線上.運(yùn)用了轉(zhuǎn)化的數(shù)學(xué)思想方法,對(duì)能力要求較高.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案