已知函數(shù)f(x)=
x
x2+b
,其中b∈R.
(Ⅰ)f(x)在x=-1處的切線與x軸平行,求b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.
(Ⅰ)由題意f(x)=
x
x2+b
,故f′(x)=
x2+b-x•2x
(x2+b)2
=
b-x2
(x2+b)2
…(2分)
依題意,由f′(-1)=
b-1
(1+b)2
=0,得b=1.…(4分)
經(jīng)檢驗(yàn),b=1符合題意.…(5分)
(Ⅱ)①當(dāng)b=0時(shí),f(x)=
1
x

故f(x)的單調(diào)減區(qū)間為(-∞,0),和(0,+∞);無單調(diào)增區(qū)間. …(6分)
②當(dāng)b>0時(shí),f′(x)=
b-x2
(x2+b)2
.令f′(x)=0,得x1=-
b
,x2=
b
…(8分)
故f(x)和f′(x)的情況如下:
x (-∞,-
b
-
b
(-
b
,
b
b
b
,+∞)
f′(x) - 0 + 0 -
f(x) 極小值 極大值
故f(x)的單調(diào)減區(qū)間為(-∞,-
b
),(
b
,+∞);單調(diào)增區(qū)間為(-
b
b
).…(11分)
③當(dāng)b<0時(shí),f(x)的定義域?yàn)镈={x|x≠±
-b
},因?yàn)閒′(x)=
b-x2
(x2+b)2
<0在D上恒成立,
故f(x)的單調(diào)減區(qū)間為(-∞,-
-b
),(-
-b
-b
),(
-b
,+∞);無單調(diào)增區(qū)間.…(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案