設(shè)雙曲線方程為,P為雙曲線上任意一點,F(xiàn)為雙曲線的一個焦點,討論以|PF|為直徑的圓與圓x2+y2=a2的位置關(guān)系.

當(dāng)點P在雙曲線的右支上時,外切;當(dāng)點P在雙曲線的左支上時,內(nèi)切


解析:

提示:用雙曲線的定義及兩圓相切時的幾何性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)雙曲線
x2
4
-y2=1的右頂點為A,P是雙曲線上異于頂點的一個動點,從A引雙曲線的兩條漸近線的平行線與直線OP (O為坐標(biāo)原點)分別交于Q和R兩點.
(1)證明:無論P點在什么位置,總有|
OP
|2=|
OQ
OR
|;
(2)設(shè)動點C滿足條件:
AC
=
1
2
AQ
+
AR
),求點C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓E的方程為
x2
a2
+
y2
b2
=1(a>b>0)雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1和l2,過橢圓E的右焦點F作直線l,使得l⊥l2于點C,又l與l1交于點P,l與橢圓E的兩個交點從上到下依次為A,B(如圖).
(1)當(dāng)直線l1的傾斜角為30°,雙曲線的焦距為8時,求橢圓的方程;
(2)設(shè)
PA
=λ1
AF
,
PB
=λ2
BF
,證明:λ12為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•遂寧二模)己知雙曲線C的方程為
x2
4
-
y2
5
=1
,若直線x-my-3=0截雙曲線的一支所得弦長為5.
(Ⅰ)求m的值;
(Ⅱ)設(shè)過雙曲線C上的一點P的直線與雙曲線的兩條漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當(dāng)λ=
2
3
時,求|
op1
|•|
OP2
|
(O為坐標(biāo)原點)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為e,右準(zhǔn)線l與兩條漸近線交于P,Q兩點,右焦點為F,且△PQF為等邊三角形.
(1)求雙曲線C的離心率e的值;
(2)若雙曲線C被直線y=ax+b截得的弦長為
b2e2
a
,求雙曲線C的方程;
(3)設(shè)雙曲線C經(jīng)過點(1,0),以F為左焦點,L為左準(zhǔn)線的橢圓,其短軸的端點為B,求BF中點的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案