【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數學考試成績進行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據列聯(lián)表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合計 | 30 | 80 | 110 |
(2)按99.9%的可靠性要求,不能認為“成績與班級有關系”
(3).
【解析】
試題
思路此類問題(1)(2)直接套用公式,經過計算“卡方”,與數表對比,作出結論。(3)是典型的古典概型概率的計算問題,確定兩個“事件”數,確定其比值。
解:(1) 4分
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合計 | 30 | 80 | 110 |
(2)根據列聯(lián)表中的數據,得到K2= ≈7.487<10.828.因此按99.9%的
可靠性要求,不能認為“成績與班級有關系” 8分
(3)設“抽到9或10號”為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數為(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36個.事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7個.所以P(A)=,即抽到9號或10號的概率為. 12分
科目:高中數學 來源: 題型:
【題目】研究發(fā)現(xiàn),北京 PM 2.5 的重要來源有土壤塵、燃煤、生物質燃燒、汽車尾氣與垃圾焚燒、工業(yè)污染和二次無機氣溶膠,其中燃煤的平均貢獻占比約為 18%.為實現(xiàn)“節(jié)能減排”,還人民“碧水藍天”,北京市推行“煤改電”工程,采用空氣源熱泵作為冬天供暖.進入冬季以來,該市居民用電量逐漸增加,為保證居民取暖,市供電部門對該市 100 戶居民冬季(按 120 天計算)取暖用電量(單位:度)進行統(tǒng)計分析,得到居民冬季取暖用電量的頻率分布直方圖如圖所示.
(1)求頻率分布直方圖中的值;
(2)從這 100 戶居民中隨機抽取 1 戶進行深度調查,求這戶居民冬季取暖用電量在[3300,3400]的概率;
(3)在用電量為[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四組居民中,用分層抽樣的方法抽取 34 戶居民進行調查,則應從用電量在[3200,3250)的居民中抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆湖北省黃岡市高三上學期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經》中“物不知數”問題的解法傳至歐洲.1874年,英國數學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關于整除的問題,現(xiàn)有這樣一個整除問題:將2至2017這2016個數中能被3除余1且被5除余1的數按由小到大的順序排成一列,構成數列,則此數列的項數為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
在平面直角坐標系中,直線的參數方程為(為參數, 為直線的傾斜角,且),以原點為極點, 軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)若直線經過圓的圓心,求直線的傾斜角;
(2)若直線與圓交于, 兩點,且,點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,點M為棱AE的中點.
(1)求證:平面BMD∥平面EFC;
(2)若AB=1,BF=2,求三棱錐A-CEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)開展技術創(chuàng)新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名技術人員,將他們隨機分成兩組,每組20人,第一組技術人員用第一種生產方式,第二組技術人員用第二種生產方式.根據他們完成生產任務的工作時間(單位:min)繪制了如下莖葉圖:
(1)求40名技術人員完成生產任務所需時間的中位數,并將完成生產任務所需時間超過和不超過的人數填入下面的列聯(lián)表:
超過 | 不超過 | 合計 | |
第一種生產方式 | |||
第二種生產方式 | |||
合計 |
(2)根據(1)中的列聯(lián)表,能否有99%的把握認為兩種生產方式的效率有差異?
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 1.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數y=f(x)對定義域內的每一個值x1,在其定義域內都存在唯一的x2,使f(x1)f(x2)=1成立,則稱該函數為“依賴函數”.
(1) 判斷函數g(x)=2x是否為“依賴函數”,并說明理由;
(2) 若函數f(x)=(x–1)2在定義域[m,n](m>1)上為“依賴函數”,求實數m、n乘積mn的取值范圍;
(3) 已知函數f(x)=(x–a)2 (a<)在定義域[,4]上為“依賴函數”.若存在實數x[,4],使得對任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求實數s的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數具備以下兩個條件:(1)至少有一條對稱軸或一個對稱中心;(2)至少有兩個零點,則稱這樣的函數為“多元素”函數,下列函數中為“多元素”函數的是_______.
①;②;③;④.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com