已知點Pn(an,bn)(n∈N*)都在直線l:y=2x+2上,P1為直線l與x軸的交點,數(shù)列{an}成等差數(shù)列,公差為1.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若f(n)=
an,n為奇數(shù)
bn,n為偶數(shù)
問是否存在k∈N*,使得f(k+5)=2f(k)-5成立?若存在,求出k的值,若不存在,說明理由.
分析:(I)令直線中d的y=0等于0求出P1的坐標即得到數(shù)列{an},{bn}的首項,利用等差數(shù)列的通項公式求出an,將直線中的x用an
代替求出y的值即},{bn}的通項公式.
(2)對k分奇數(shù)、偶數(shù)討論得到f(k)的值,列出方程求出k的值.
解答:解(I)由題意知P1(-1,0)
∴a1=-1,b1=0
∴an=a1+(n-1)•1=-1+n-1=n-2
∴bn=2an+2=2(n-2)+2=2n-2…6
(Ⅱ)若k為奇數(shù),則f(k)=ak=k-2f(k+5)=bk+5=2k+8
∴2k+8=2(k-2)-5無解
若k為偶數(shù),則f(k)=2k-2,f(k+5)=k+3
∴k+3=2(2k-2)-5,解得k=4
綜上,存在k=4使f(k+5)=2f(k)-5成立.
點評:解決等差數(shù)列、等比數(shù)列兩個特殊的數(shù)列問題,一般利用兩個特殊數(shù)列的通項公式、前n項和公式列方程組求出基本量再解決.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(理)已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標原點,其中{an}、{bn}分別為等差數(shù)列和等比數(shù)列,P1是線段AB的中點,對于給定的公差不為零的an,都能找到唯一的一個bn,使得P1,P2,P3,…,Pn,…,都在一個指數(shù)函數(shù)
 
(寫出函數(shù)的解析式)的圖象上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點集L={(x,y)|y=
m
n
},其中
m
=(2x-b,1),
n
=(1,b+1),點列Pn(an,bn)(n∈N+)在L中,p1為L與y軸的交點,數(shù)列{an}是公差為1的等差數(shù)列.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,令Sn=f(1)+f(2)+f(3)+…+f(n),試寫出Sn關(guān)于n的表達式;
(Ⅲ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,給定奇數(shù)m(m為常數(shù),m∈N+,m>2).是否存在k∈N+,,使得
f(k+m)=2f(m),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數(shù)列{an}的公差為1,n∈N*
(I)求數(shù)列{bn}的通項公式;
(Ⅱ)若f(n)=
an  n為正奇數(shù)
bn  n為正偶數(shù)
,令Sn=f(1)+f(2)+f(3)+…+f(n);試寫出Sn關(guān)于n的函數(shù)解析式;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知點列Pn(an,bn)∈L,P1為L與y軸的交點.等差數(shù)列{an}的公差為1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)對于數(shù)列{bn},設(shè)Sn是其前n項和,是否存在一個與n無關(guān)的常數(shù)M,使
Sn
S2n
=M
,若存在,求出此常數(shù)M,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數(shù)列{an}的公差為1,n∈N+
(1)求數(shù)列{an},{bn}的通項公式;
(2)若f(n)=
an(n=2k-1)
bn(n=2k)
(k∈N+)
,是否存在k∈N+使得f(k+11)=2f(k),若存在,求出k的值;若不存在,請說明理由.
(3)求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥2,n∈N*).

查看答案和解析>>

同步練習冊答案