分析 首先將原式變形為cos$\frac{2π}{7}$cos$\frac{4π}{7}$cos(π-$\frac{π}{7}$)的形式,觀察角度關(guān)系恰好是二倍角關(guān)系,所以分子、分母同時乘8sin$\frac{π}{7}$,3次運用正弦的二倍角公式化簡求值.
解答 解:原式=cos$\frac{2π}{7}$cos$\frac{4π}{7}$cos(π-$\frac{π}{7}$)=-$\frac{8sin\frac{π}{7}cos\frac{π}{7}cos\frac{2π}{7}cos\frac{4π}{7}}{8sin\frac{π}{7}}$=-$\frac{4sin\frac{2π}{7}cos\frac{2π}{7}cos\frac{4π}{7}}{8sin\frac{π}{7}}$=-$\frac{2sin\frac{4π}{7}cos\frac{4π}{7}}{8sin\frac{π}{7}}$=-$\frac{sin\frac{8π}{7}}{8sin\frac{π}{7}}$=-$\frac{-sin\frac{π}{7}}{8sin\frac{π}{7}}$=$\frac{1}{8}$;
故答案為:$\frac{1}{8}$.
點評 本題考查了三角函數(shù)式的化簡求值;關(guān)鍵是發(fā)現(xiàn)角度的關(guān)系,巧配二倍角公式.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k>-$\frac{a}$ | B. | k<$\frac{a}$ | C. | k>$\frac{a}$或k<-$\frac{a}$ | D. | -$\frac{a}$<k<$\frac{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,5] | B. | [-2,2] | C. | [-2,5] | D. | [-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com