設(shè)直線l的方程為(m2-2m-3)x+(2m2+m-1)y=2m-6,根據(jù)下列條件分別求m的值.

(1)經(jīng)過定點P(2,-1);

(2)在y軸上截距為6;

(3)傾斜角為

答案:
解析:

  解:(1)點在直線l上,即P(2,-1)適合方程(m2-2m-3)x+(2m2+m-1)y=2m-6,把P(2,-1)代入得2(m2-2m-3)-(2m2+m-1)=2m-6,解得

  (2)令x=0,得,由題意知:,解得或0.

  (3)傾斜角為,即斜率為1,即,解得m=-1或.考慮到當m=-1時,m2-2m-3=2m2+m-1=0,所以應(yīng)舍去.故m=

  思路解析:(1)直線過定點,即點的坐標適合直線方程;(2)將直線的一般式方程化成斜截式,可得直線在y軸上截距,或直接令x=0得到直線在y軸上截距;(3)傾斜角為,即斜率為1.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,F(xiàn)是橢圓的右焦點,以F為圓心的圓過原點O和橢圓的右頂點,設(shè)P是橢圓的動點,P到兩焦點距離之和等于4
(Ⅰ)求橢圓和圓的標準方程;
(Ⅱ)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的方程為x+my-2m+6=0,根據(jù)下列條件分別確定m的值.
(1)直線l在x軸上的截距是-3;
(2)直線l的斜率是l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的方程為(m2-2m-3)x+(2m2+m-1)y-2m+6-0,根據(jù)下列條件求m的值.
(1)直線l的斜率為1;
(2)直線l經(jīng)過點P(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的方程為(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根據(jù)下列條件分別求m的值:
①l在x軸上的截距是-3;
②斜率為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•長寧區(qū)一模)設(shè)直線l的方程為y=kx-1,等軸雙曲線C:x2-y2=a2(a>0)的中心在原點,右焦點坐標為( 
2
,0).
(1)求雙曲線方程;
(2)設(shè)直線l與雙曲線C的右支交于不同的兩點A,B,記AB中點為M,求k的取值范圍,并用k表示M點的坐標.
(3)設(shè)點Q(-1,0),求直線QM在y軸上截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案