設A 和G 分別是a,b 等差中項和等比中項,則a2+b2 的值為( 。
A.2A2-G2B.4A2-G2C.2A2-2G2D.4A2-2G2
∵A和G分別是a,b等差中項和等比中項,
∴2A=a+b,G2=ab,
則a2+b2=(a+b)2-2ab=(2A)2-2G2=4A2-2G2
故選D
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為y=
1
8
x2+b
,如圖所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G,已知拋物線在點G處的切線經(jīng)過橢圓的右焦點F1
(1)求點G和點F1的坐標(用b表示);
(2)求滿足條件的橢圓方程和拋物線方程;
(3)設A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為x2=8(y-b).如圖所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G,已知拋物線在點G的切線經(jīng)過橢圓的右焦點F1
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A 和G 分別是a,b 等差中項和等比中項,則a2+b2 的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設A 和G 分別是a,b 等差中項和等比中項,則a2+b2 的值為


  1. A.
    2A2-G2
  2. B.
    4A2-G2
  3. C.
    2A2-2G2
  4. D.
    4A2-2G2

查看答案和解析>>

同步練習冊答案