在平面直角坐標系xOy中,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,其焦點在圓x2+y2=1上.
(1)求橢圓的方程;
(2)設A,B,M是橢圓上的三點(異于橢圓頂點),且存在銳角θ,使
OM
=cosθ
OA
+sinθ
OB

(i)求證:直線OA與OB的斜率之積為定值;
(ii)求OA2+OB2
(1)依題意,得  c=1.于是,a=
2
,b=1.     …(2分)
所以所求橢圓的方程為
x2
2
+y2=1
. …(4分)
(2)(i)設A(x1,y1),B(x2,y2),
x21
2
+
y21
=1
①,
x22
2
+
y22
=1
②.
又設M(x,y),因
OM
=cosθ
OA
+sinθ
OB
,故
x=x1cosθ+x2sinθ
y=y1cosθ+y2sinθ.
…(7分)
因M在橢圓上,故
(x1cosθ+x2sinθ)2
2
+(y1cosθ+y2sinθ)2=1

整理得(
x21
2
+
y21
)cos2θ+(
x22
2
+
y22
)sin2θ+2(
x1x2
2
+y1y2)cosθsinθ=1

將①②代入上式,并注意cosθsinθ≠0,得  
x1x2
2
+y1y2=0

所以,kOAkOB=
y1y2
x1x2
=-
1
2
為定值. …(10分)
(ii)(y1y2)2=(-
x1x2
2
)2=
x21
2
x22
2
=(1-
y21
)(1-
y22
)=1-(
y21
+
y22
)+
y21
y22
,故y12+y22=1.
(
x21
2
+
y21
)+(
x22
2
+
y22
)=2
,故x12+x22=2.
所以,OA2+OB2=x12+y12+x22+y22=3.  …(16分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案