(本題滿分15分)已知數(shù)列中,,(n∈N*),
(1)試證數(shù)列是等比數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(2)在數(shù)列{}中,求出所有連續(xù)三項(xiàng)成等差數(shù)列的項(xiàng);
(3)在數(shù)列{}中,是否存在滿足條件1<r<s的正整數(shù)r ,s ,使得b1,br,bs成等差數(shù)列?若存在,確定正整數(shù)r,s之間的關(guān)系;若不存在,說明理由.
(1)(2)有且僅有連續(xù)三項(xiàng)b2,b3,b4成等差數(shù)列
(3)存在不小于4的正偶數(shù)s,且s=r+1,使得b1,br,bs成等差數(shù)列
【解析】 解:(1)證明: 由,得an+1=2n—an,
∴,
∴數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.………………3分
∴ , 即,
∴…………………………………………………………………………5分
(2)解:假設(shè)在數(shù)列{bn}中,存在連續(xù)三項(xiàng)bk-1,bk,bk+1(k∈N*, k≥2)成等差數(shù)列,則bk-1+bk+1=2bk,即,
即=4………………………………………………………………7分
若k為偶數(shù),則>0,4=-4<0,所以,不存在偶數(shù)k,使得
bk-1,bk,bk+1成等差數(shù)列!8分
若k為奇數(shù),則k≥3,∴≥4,而4=4,所以,當(dāng)且僅當(dāng)k=3時(shí),
bk-1,bk,bk+1成等差數(shù)列。
綜上所述,在數(shù)列{bn}中,有且僅有連續(xù)三項(xiàng)b2,b3,b4成等差數(shù)列!10分
(3)要使b1,br,bs成等差數(shù)列,只需b1+bs=2 br,
即3+=2[],即, ①
(。┤s=r+1,在①式中,左端=0,右端=,要使①式成立,當(dāng)且僅當(dāng)s為偶數(shù)時(shí)成立。又s>r>1,且s,r為正整數(shù),所以,當(dāng)s為不小于4的正偶數(shù),且s=r+1時(shí),b1,br,bs成等差數(shù)列!13分
(ⅱ)若s≥r+2時(shí),在①式中,左端≥=>0,右端≤0,∴當(dāng)s≥r+2時(shí),b1,br,bs不成等差數(shù)列。
綜上所述,存在不小于4的正偶數(shù)s,且s=r+1,使得b1,br,bs成等差數(shù)列!15分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題
(本題滿分15分)已知點(diǎn)(0,1),,直線、都是圓的切線(點(diǎn)不在軸上).
(Ⅰ)求過點(diǎn)且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(1,0)作直線與(Ⅰ)中的拋物線相交于兩點(diǎn),問是否存在定點(diǎn)使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及常數(shù);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)
已知命題p:,命題q:. 若“p且q”為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知函數(shù).
(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;
(Ⅲ)當(dāng),且時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點(diǎn)A,B,
(1)當(dāng)直線的斜率為1時(shí),求線段AB的長;
(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線對稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測 題型:解答題
(本題滿分15分)已知直線,曲線
(1)若且直線與曲線恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值;
(2)若,直線與曲線M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com