已知定義域?yàn)?sub>的函數(shù)同時(shí)滿足以下三個(gè)條件:

① 對(duì)任意的,總有≥0; ②;

③若,則有成立,并且稱為“友誼函數(shù)”,

請(qǐng)解答下列各題:

(1)若已知為“友誼函數(shù)”,求的值;

(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.

(3)已知為“友誼函數(shù)”,且 ,求證:

解:(1)取

,………… 2分

又由,得…………4分

(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.

解(2)顯然上滿足①

………6分

,且,則有

  故滿足條件①﹑②﹑③

所以為友誼函數(shù). ………… 9分

(3)已知為“友誼函數(shù)”,且 ,求證:

解:(3)因?yàn)?sub>,則0<<1,………… 11分

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請(qǐng)結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的定義域與值域都為同一區(qū)間D,則稱函數(shù)f(x)為區(qū)間D上的“同勢(shì)”函數(shù).已知函數(shù)f(x)=x2-2x+1是區(qū)間D上的“同勢(shì)”函數(shù),則此區(qū)間可以是
[0,
3+
5
2
]或[0,1]或[
3+
5
2
,+∞)等
[0,
3+
5
2
]或[0,1]或[
3+
5
2
,+∞)等
.(只要寫(xiě)出一個(gè)你認(rèn)為正確的區(qū)間即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿足f(x)≤g(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=lnx,g(x)=1-
1
x

(1)試探求f(x)與g(x)是否存在“左同旁切線”,若存在,請(qǐng)求出左同旁切線方程;若不存在,請(qǐng)說(shuō)明理由.
(2)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點(diǎn),0<x1<x2,且存在實(shí)數(shù)x3>0,使得f(x3)=
f(x2)-f(x1)
x2-x1
,證明:x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省豫東、豫北十所名校高三測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知

    (I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

    (Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請(qǐng)結(jié)合(I)中的結(jié)論證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-數(shù)學(xué)公式
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得f′(x3)=數(shù)學(xué)公式.請(qǐng)結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

同步練習(xí)冊(cè)答案