【題目】某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位: )有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶,為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量(單位:瓶)為多少時(shí), 的數(shù)學(xué)期望達(dá)到最大值?

【答案】(1)分布列為:

(2)

【解析】試題分析:1由題意知的可能取值為200,300500,分別求出相應(yīng)的概率,由此能求出的分布列.
2當(dāng)時(shí), , ;當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí), .從而得到當(dāng)時(shí), 最大值為520元.

試題解析:(1)易知需求量可取200,300,500,

,

則分布列為:

(2)①當(dāng)時(shí), ,此時(shí),當(dāng)時(shí)取到;

②當(dāng)時(shí),

此時(shí),當(dāng)時(shí)取到;

③當(dāng)時(shí),

,此時(shí);④當(dāng)時(shí),易知一定小于③的情況.

綜上所述,當(dāng)時(shí),取到最大值為520.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2+5x+b>0的解集是{x|2<x<3},則不等式bx2﹣5x+a>0的解集是(
A.{x|x<﹣3或x>﹣2}
B.{x|x<﹣ 或x>﹣ }
C.{x|﹣ <x<﹣ }
D.{x|﹣3<x<﹣2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,該橢圓經(jīng)過點(diǎn) 且離心率為
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn),求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在[﹣1,1]上的奇函數(shù),且對(duì)任意a、b∈[﹣1,1],當(dāng)a+b≠0時(shí),都有 >0.
(1)若a>b,比較f(a)與f(b)的大。
(2)解不等式f(x﹣ )<f(x﹣ );
(3)記P={x|y=f(x﹣c)},Q={x|y=f(x﹣c2)},且P∩Q=,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣4,4)、B(4,4),直線AM與BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率之差為﹣2,點(diǎn)M的軌跡為曲線C.

(1)求曲線C 的軌跡方程;

(2)Q為直線y=﹣1上的動(dòng)點(diǎn),過Q做曲線C的切線,切點(diǎn)分別為D、E,求△QDE的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (m,n為常數(shù))是定義在[﹣1,1]上的奇函數(shù),且f(﹣1)=﹣
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于x的不等式f(2x﹣1)<﹣f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求區(qū)間A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.令.

(1)求的通項(xiàng)公式;

(2)若,且數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 底面, 上一點(diǎn)

(1)證明: 平面;

,求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案