分析 解法一:利用在[-1,1]上,f′(x)<0,證得f(x)在[-1,1]上是減函數(shù).
解法二:用函數(shù)單調(diào)性的定義進行證明,設(shè)x1<x2,運用作差法證出f(x1)>f(x2);問題得以解決.
解答 解:解法一:在[-1,1]上,∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x2-1)≤0,
∴f(x)=x3-3x在[-1,1]上是減函數(shù).
解法二:設(shè)-1≤x1≤x2≤1,
∵f(x1)-f(x2)=${{x}_{1}}^{3}$-3x1-${{x}_{2}}^{3}$+3x2=(x1-x2)(${{x}_{1}}^{2}$+x1•x2+${{x}_{2}}^{2}$)-3(x1-x2)=(x1-x2)(${{x}_{1}}^{2}$+x1•x2+${{x}_{2}}^{2}$-3)=(x1-x2)•[${{(x}_{1}+\frac{{x}_{2}}{2})}^{2}$+$\frac{3}{4}$${{x}_{2}}^{2}$-3],
由題設(shè)可得,x1-x2<0,x1+$\frac{{x}_{2}}{2}$>-$\frac{3}{2}$,或x1+$\frac{{x}_{2}}{2}$<$\frac{3}{2}$,∴${{(x}_{1}+\frac{{x}_{2}}{2})}^{2}$<$\frac{9}{4}$,且$\frac{3}{4}$${{x}_{2}}^{2}$≤$\frac{3}{4}$,
∴${{(x}_{1}+\frac{{x}_{2}}{2})}^{2}$+$\frac{3}{4}$${{x}_{2}}^{2}$<3,∴${{(x}_{1}+\frac{{x}_{2}}{2})}^{2}$+$\frac{3}{4}$${{x}_{2}}^{2}$-3<0,∴(x1-x2)•[${{(x}_{1}+\frac{{x}_{2}}{2})}^{2}$+$\frac{3}{4}$${{x}_{2}}^{2}$-3>0,
即f(x1)>f(x2),故f(x)=x3-3x在[-1,1]上是減函數(shù).
點評 本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,函數(shù)單調(diào)性的定義,作差法是常用的方法,證明過程中注意符號的變化以及自變量的取值范圍,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com