設(shè)集合A={x||x-a|<1},B={x|1<x<5,x∈R},A∩B=∅,則實數(shù)a的取值范圍是( )
A.{a|0≤a≤6}
B.{a|a≤2,或a≥4
C.{a|a≤0,或a≥6}
D.{a|2≤a≤4}
【答案】分析:由絕對值的幾何意義表示出集合A,再結(jié)合數(shù)軸分析A可能的情況,進(jìn)而求解即可.
解答:解:由|x-a|<1得-1<x-a<1,即a-1<x<a+1.如圖

由圖可知a+1≤1或a-1≥5,所以a≤0或a≥6.
故選C
點評:本題主要考查絕對值不等式的基本解法與集合交集的運算,不等式型集合的交、并集通?梢岳脭(shù)軸進(jìn)行,解題時注意驗證區(qū)間端點是否符合題意,屬于中等題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、設(shè)集合A={x||x-2|≤2,x∈R},B={y|y=-x2,-1≤x≤2},則CR(A∩B)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合A={x|y=1gx},B{x|x<1},則A∪B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x<0},B={x|x2≤1},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x+1>0},集合B={x|x2-2<0}則A∪B等于( 。
A、{x|x<-1或x>
2
}
B、{x|-1<x<
2
}
C、{x|x>-
2
}
D、{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},現(xiàn)在我們定義對于任意兩個集合M,N的運算:M?N={x|x∈M∪N,且x?M∩N},則A?B=(  )
A、{1,2,3}B、{1,2}C、{2,3}D、{1,3}

查看答案和解析>>

同步練習(xí)冊答案