已知數(shù)列{an}的通項(xiàng)公式是,若對(duì)于n∈N+,都有an+1>an成立,則實(shí)數(shù)k的取值范圍是   
【答案】分析:利用,對(duì)于n∈N+,都有an+1>an成立,可得an+1-an=(n+1)2+(n+1)k+2-n2-kn-2=2n+1+k>0,分離參數(shù),利用n∈N+,即可求得實(shí)數(shù)k的取值范圍.
解答:解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231349781020772/SYS201311012313497810207012_DA/1.png">,對(duì)于n∈N+,都有an+1>an成立
所以an+1-an=(n+1)2+(n+1)k+2-n2-kn-2=2n+1+k>0
所以k>-(2n+1)
因?yàn)閚∈N+,所以k>-3
所以實(shí)數(shù)k的取值范圍是(-3,+∞)
故答案為:(-3,+∞)
點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的綜合,考查利用函數(shù)思想,求參數(shù)的范圍,應(yīng)注意數(shù)列與函數(shù)的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)為an=2n-1,Sn為數(shù)列{an}的前n項(xiàng)和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項(xiàng)和的取值范圍為(  )
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
,
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項(xiàng)公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n-5,則|a1|+|a2|+…+|a10|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
1
n+1
+
n
求它的前n項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案