(8分) 若f(x)=ax3+bx2,且f(x)在點P(-1,-2)處的切線恰好與直線3x-y=0垂直。(1)求a,b的值;(2)若f(x)在區(qū)間[0,m]上單調(diào),求m的取值范圍。
解:a="-1,b=-3, " [-2,0)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
已知函數(shù))在區(qū)間上有最大值和最小值.設
(1)求、的值;
(2)若不等式上有解,求實數(shù)的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)),其中
(Ⅰ)當時,討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)僅在處有極值,求的取值范圍;
(Ⅲ)若對于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)已知函數(shù)f(x)=2ax3+bx2­­­­­­-6x在x=1處取得極值
(1) 討論f(1)和f(-1)是函數(shù)f(x)的極大值還是極小值;
(2) 試求函數(shù)f(x)在x=" -" 2處的切線方程;
(3) 試求函數(shù)f(x)在區(qū)間[-3,2] 上的最值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知集合AB={x|x2-2xm<0},
(1)當m=3時,求A∩(∁RB);
(2)若AB={x|-1<x<4},求實數(shù)m的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)存在反函數(shù),則方程為常數(shù))
A.有且只有一個實根B.至少有一個實根
C.至多有一個實根D.沒有實根

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像在點處的切線的傾斜角為,問:在什么范圍取值時,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分) 求函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)的定義域為D,如果存在正實數(shù),使對任意,都有,且恒成立,則稱函數(shù)為D上的“型增函數(shù)”.已知是定義在R上的奇函數(shù),且當時,,若為R上的“2012型增函數(shù)”,則實數(shù)的取值范圍是     

查看答案和解析>>

同步練習冊答案