函數(shù)f(x)是定義在R上的增函數(shù),y=f-1(x)是它的反函數(shù),若f(3)=0,f(2):a,f-1(2)=b,f-1(0)=c,則a,b,c的大小關(guān)系為


  1. A.
    c>a>b
  2. B.
    b>c>a
  3. C.
    b>a>c
  4. D.
    a>b>c
B
分析:先根據(jù)原函數(shù)的單調(diào)性求出反函數(shù)在R上的單調(diào)性,從而可判定b與c的大小關(guān)系,再根據(jù)原函數(shù)的單調(diào)性可判定a的符號,從而確定a與c的大小,即可求出所求.
解答:∵函數(shù)f(x)是定義在R上的增函數(shù),y=f-1(x)是它的反函數(shù)
∴y=f-1(x)是定義在R上的增函數(shù)
∵2>0
∴f-1(2)>f-1(0)即b>c
f(2)=a<f(3)=0=f(c)
∴a<0<c=3<b
故選B.
點(diǎn)評:本題主要考查了原函數(shù)的單調(diào)性與反函數(shù)的單調(diào)性直接的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
3
2
,0)時(shí)
,f(x)=log2(-3x+1),則f(2011)=( 。
A、-2
B、2
C、4
D、log27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在N*的函數(shù),且滿足f(f(k))=3k,f(1)=2,設(shè)an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
(I)求bn的表達(dá)式;
(II)求證:
b1
f(a1)
+
b2
f(a2) 
+…+
bn
f(an)
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-2x)<0,則實(shí)數(shù)x的取值范圍為
(0,1]
(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•臨沂二模)已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈[-e,0)時(shí),f(x)=ax-ln(-x),(a<0,a∈R)
(I)求f(x)的解析式;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,e]時(shí)f(x)的最大值是-3,如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

注:此題選A題考生做①②小題,選B題考生做①③小題.
已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí)有f(x)=
4xx+4

①求f(x)的解析式;
②(選A題考生做)求f(x)的值域;
③(選B題考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案