如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

(1) 求CD與面ABC所成的角正弦值的大小;

(2) 對于AD上任意點(diǎn)H,CH是否與面ABD垂直。

 

【答案】

(1)

(2) CH不可能同時(shí)垂直BD和BA,即CH不與面ABD垂直

【解析】

試題分析:解: 依題意,ABD=90o,建立如圖的坐標(biāo)系使得△ABC在yoz平面上,

△ABD與△ABC成30o的二面角, DBY=30o,又AB=BD=2,  A(0,0,2),B(0,0,0),

C(0,,1),D(1,,0),

(1)x軸與面ABC垂直,故(1,0,0)是面ABC的一個(gè)法向量。

設(shè)CD與面ABC成的角為,而= (1,0,-1),

sin==

[0,],=;      6分

(2) 設(shè)=t= t(1,,-2)= (t,t,-2 t),

=+=(0,-,1) +(t,t,-2 t) = (t,t-,-2 t+1),

,則 (t,t-,-2 t+1)·(0,0,2)="0" 得t=,      10分

此時(shí)=(,-,0),而=(1,,0),·=-=-10, 不垂直,即CH不可能同時(shí)垂直BD和BA,即CH不與面ABD垂直。       12分

考點(diǎn):空間中線面的位置關(guān)系

點(diǎn)評:主要是考查了空間中線面位置關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選考題
請從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計(jì)分,請?jiān)诖痤}卷上注明題號.
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當(dāng)AC=1,BC=2時(shí),求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直角△ABC的頂點(diǎn)A、B分別在x軸、y軸的正半軸上移動(dòng),直角頂點(diǎn)C與原點(diǎn)O在直線AB的兩側(cè),則頂點(diǎn)C的軌跡是    ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)請考生在第(1),(2),(3)題中任選一題作答,如果多做,則按所做的第一題記分.
(1)選修4-1:幾何證明選講
如圖,在△ABC中,D是AC的中點(diǎn),E是BD的中點(diǎn),AE的延長線交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面積為S1,四邊形CDEF的面積為S2,求S1:S2的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),a=
π
6
軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長度.已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角a=
π
6

( I)寫出直線l的參數(shù)方程;
( II)設(shè)l與圓ρ=2相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若關(guān)于x的不等式f(x)>a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點(diǎn),E是A1B1的中點(diǎn).
(I)求證:A1B1∥平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖6所示,在正△ABC中,E、F依次是AB、AC的中點(diǎn),AD⊥BC,EH⊥BC,FG⊥BC,

D、H、G為垂足.若將正△ABC繞AD旋轉(zhuǎn)一周所得的圓錐體積為V,則其中由陰影部分所產(chǎn)生的旋轉(zhuǎn)體的體積與V的比值為多少?

          圖6

查看答案和解析>>

同步練習(xí)冊答案