已知函數(shù)f(x)=x3-ax2+bx+c.
(Ⅰ)若a=3,b=-9,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象上存在點(diǎn)P,使P點(diǎn)處的切線與x軸平行,求實(shí)數(shù)a,b所滿足的關(guān)系式.
【答案】分析:(1)將a=3,b=-9函數(shù)f(x)的解析式后求導(dǎo),當(dāng)導(dǎo)函數(shù)大于0時(shí)可求原函數(shù)的增區(qū)間,當(dāng)導(dǎo)函數(shù)小于0時(shí)可求原函數(shù)的減區(qū)間.
(2)對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),然后根據(jù)f'(x)=0有解可得答案.
解答:解:(Ⅰ)若a=3,b=-9,
則f'(x)=3x2-2ax+b=3x2-6x-9=3(x+1)(x-3).
令f/(x)>0,即3(x+1)(x-3)>0.則x<-1或x>3.
∴f(x)的單調(diào)增區(qū)間是(-∞,-1),(3,+∞).
令f/(x)<0,即3(x+1)(x-3)<0.則-1<x<3.
∴f(x)的單調(diào)減區(qū)間是(-1,3).
(Ⅱ)f'(x)=3x2-2ax+b,設(shè)切點(diǎn)為P(x,y),
則曲線y=f(x)在點(diǎn)P處的切線的斜率k=f'(x)=3x2-2ax+b.
由題意,知f'(x)=3x2-2ax+b=0有解,
∴△=4a2-12b≥0即a2≥3b.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系.屬基礎(chǔ)題.