設(shè)函數(shù)f(x)=,求關(guān)于x的不等式f(x)≥1的解集.
【答案】分析:討論x,分別在每一段函數(shù)上解不等式f(x)≥1,最后求并集即可.
解答:解:當(dāng)x<1時,(x+1)2≥1
解得x≤-2或0≤x<1
當(dāng)x≥1時,4-≥1
解得1≤x≤10
綜上所述:不等式f(x)≥1的解集{x|x≤-2或0≤x≤10}
點(diǎn)評:本題主要考查了分段函數(shù)的解析式求法,以及一元二次不等式的解法,同時考分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

27、對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的“不動點(diǎn)”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=3x+4求集合A和B;
(2)求證:A⊆B;
(3)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xex,求:
(I)曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市武穴市梅川高中高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=
(Ⅰ)求函數(shù)y=f(x)取最值時x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省安慶市重點(diǎn)中學(xué)高三(下)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=
(Ⅰ)求函數(shù)y=f(x)取最值時x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)y=f(x)與函數(shù)y=f(f(x))的定義域交集為D.若對任意的x∈D,都有f(f(x))=x,則稱函數(shù)f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1和g(x)=2x-1是否是集合M的元素,并說明理由;
(2)設(shè)函數(shù)f(x)=數(shù)學(xué)公式,試求函數(shù)f(x)的反函數(shù)f-1(x),并證明f-1(x)∈M;
(3)若f(X)=數(shù)學(xué)公式(a,b為常數(shù)且a>0),求使f(x)<1成立的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案