在算式“4×□+9×△=◇”的□、△中,分別填入一個(gè)正整數(shù),使它們的倒數(shù)之和的最小值為,則◇中應(yīng)填入的值為   
【答案】分析:適當(dāng)設(shè)出變量x、y、z,則問題變?yōu)橐阎?x+9y=z,,求z的值.先將4x+9y=z變形為,再利用1的代換和均值不等式求解即可.
解答:解:設(shè)□、△、◇分別為x,y,z(x,y,z∈Z+),則4×□+9×△=◇為4x+9y=z,
,
,
∴z=30.
故答案為30.
點(diǎn)評(píng):本題考查了利用均值不等式求最值,靈活運(yùn)用了“1”的代換和方程思想,是高考考查的重點(diǎn)內(nèi)容.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省黃岡市武穴中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(實(shí)驗(yàn)班)(解析版) 題型:選擇題

在算式“4×□+1×△=30”的兩個(gè)□,△中,分別填入兩個(gè)正整數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)構(gòu)成的數(shù)對(duì)(□,△)應(yīng)為( )
A.(4,14)
B.(5,10)
C.(6,6)
D.(3,18)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2012學(xué)年浙江省杭州外國語學(xué)校高三(上)11月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在算式“1×□+4×□=30”的兩個(gè)□中,分別填入兩個(gè)自然數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)的和為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷D(五)(解析版) 題型:填空題

在算式“4×□+1×△=30”的□,△中,分別填入一個(gè)正整數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)構(gòu)成的數(shù)對(duì)(□,△)應(yīng)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市東城區(qū)普通校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

在算式“4×□+1×△=30”的□,△中,分別填入一個(gè)正整數(shù),使它們的倒數(shù)之和最小,則這兩個(gè)數(shù)構(gòu)成的數(shù)對(duì)(□,△)應(yīng)為   

查看答案和解析>>

同步練習(xí)冊答案