若a>0,求證≥a+-2

答案:
解析:

  證明:若要證明成立

  只需證明  4分

    6分

    8分

    10分

    12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•沈陽二模)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|.
(1)解不等式:1≤f(x)+f(x-1)≤2;
(2)若a>0,求證:f(ax)-af(x)≤f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由原點O向三次曲線y=x3-3ax2+bx(a≠0)引切線,切于不同于點O的點P1(x1,y1),再由P1引此曲線的切線,切于不同于P1的點P2(x2,y2),如此繼續(xù)地作下去,…,得到點列{Pn(xn,yn)},試回答下列問題:
(1)求x1;
(2)求xn與xn+1的關(guān)系;
(3)若a>0,求證:當n為正偶數(shù)時,xn<a;當n為正奇數(shù)時,xn>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江蘇)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<β<α<π.
(1)若|
a
-
b
|=
2
,求證:
a
b
;
(2)設(shè)
c
=(0,1),若
a
+
b
=
c
,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex-a(x+1).
(1)若a>0,f(x)≥0對一切x∈R恒成立,求a的最大值.
(2)設(shè)g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點,若對任意的a≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:1n+3n+…+(2n-1)n
e
e-1
•(2n)n

查看答案和解析>>

同步練習(xí)冊答案