科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三三月調考理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)當時,函數(shù)
取得極大值,求實數(shù)
的值;
(Ⅱ)已知結論:若函數(shù)在區(qū)間
內存在導數(shù),則存在
,使得
. 試用這個結論證明:若函數(shù)
(其中
),則對任意
,都有
;
(Ⅲ)已知正數(shù)滿足
,求證:對任意的實數(shù)
,若
時,都
有.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江西省高三4月月考數(shù)學文理合卷試卷(解析版) 題型:解答題
理科(本小題14分)已知函數(shù),當
時,函數(shù)
取得極大值.
(Ⅰ)求實數(shù)的值;(Ⅱ)已知結論:若函數(shù)
在區(qū)間
內導數(shù)都存在,且
,則存在
,使得
.試用這個結論證明:若
,函數(shù)
,則對任意
,都有
;(Ⅲ)已知正數(shù)
滿足
求證:當
,
時,對任意大于
,且互不相等的實數(shù)
,都有
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江西南昌10所省高三第二次模擬數(shù)學試卷(五)(解析版) 題型:解答題
理科已知函數(shù),當
時,函數(shù)
取得極大值.
(Ⅰ)求實數(shù)的值;(Ⅱ)已知結論:若函數(shù)
在區(qū)間
內導數(shù)都存在,且
,則存在
,使得
.試用這個結論證明:若
,函數(shù)
,則對任意
,都有
;(Ⅲ)已知正數(shù)
滿足
求證:當
,
時,對任意大于
,且互不相等的實數(shù)
,都有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com