若對(duì)于一切正實(shí)數(shù)x不等式恒成立,則實(shí)數(shù)a的取值范圍是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為f(n),(n∈N*
(1)求f(1),f(2)的值及f(n)的表達(dá)式;
(2)記Tn=
f(n)•f(n+1)
2n
,試比較Tn與Tn+1的大;若對(duì)于一切的正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)Sn為數(shù)列bn的前n項(xiàng)的和,其中bn=2f(n),問是否存在正整數(shù)n,t,使
Sn+tbn
Sn+1-tbn+1
1
16
成立?若存在,求出正整數(shù)n,t;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.
(1)求f(
1
2
)
的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,是否存在實(shí)數(shù)M,使2na1a2an≥M•
2n+3
•(2a1-1)•(2a2-1)…(2an-1)
對(duì)于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x, y,均有

f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0。

   (1)求f(1), f()的值;

   (2)試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;

   (3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{a??n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項(xiàng)和,求數(shù)列{an}的通項(xiàng)公式;

   (4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對(duì)于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.
(1)求數(shù)學(xué)公式的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,是否存在實(shí)數(shù)M,使數(shù)學(xué)公式對(duì)于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市合川區(qū)大石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.
(1)求的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,是否存在實(shí)數(shù)M,使對(duì)于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案