17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{lo{g}_{\frac{1}{2}}{x}^{2},x>1}\end{array}\right.$,則f(4)=( 。
A.5B.0C.-4D.4

分析 由已知得f(4)=$lo{g}_{\frac{1}{2}}{4}^{2}$,由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{lo{g}_{\frac{1}{2}}{x}^{2},x>1}\end{array}\right.$,
∴f(4)=$lo{g}_{\frac{1}{2}}{4}^{2}$=-4.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列各組中的兩個(gè)函數(shù)是相等函數(shù)的為( 。
A.y=x2-2x-1與y=t2-2t-1B.y=1與 $y=\frac{x}{x}$
C.y=6x與$y=6\sqrt{x^2}$D.$y={(\sqrt{x})^2}$與$y=\root{3}{x^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$,且點(diǎn)M和N分別為B1C和D1D的中點(diǎn).
(I)求證:MN∥平面ABCD;
(II)求二面角D1-AC-B1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓O:x2+y2=4與x軸相交于A,B兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)P使|PA|、|PO|、|PB|成等比數(shù)列,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={1,2,3},B={2,5},則A∩B=( 。
A.{1,3,5}B.{1,5}C.{2}D.{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.用函數(shù)單調(diào)性的定義證明f(x)=x2+1在(0,+∞)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列命題:①存在實(shí)數(shù)x,使$sinx+cosx=\frac{3}{2}$;②若α,β是第一象限角,且α>β,則cosα>cosβ;③函數(shù)$y=sin(\frac{2}{3}x+\frac{π}{2})$是偶函數(shù);④函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位,得到函數(shù)$y=sin(2x+\frac{π}{4})$的圖象.
其中正確命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)求經(jīng)過直線l1:2x+3y-5=0與l2:7x+15y+1=0的交點(diǎn),且平行于直線x+2y-3=0的直線方程;
(2)求與直線3x+4y-7=0垂直,且與原點(diǎn)的距離為6的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)集合 A={x|2<x<4},B={a<x<3a}.
(1)若A∩B≠∅,求實(shí)數(shù)a的范圍.
(2)若A∪B={x|2<x<6},求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案