已知橢圓
x2
4
+y2=1
的左、右頂點(diǎn)分別為A、B,曲線E是以橢圓中心為頂點(diǎn),B為焦點(diǎn)的拋物線.
(Ⅰ)求曲線E的方程;
(Ⅱ)直線l:y=
k
(x-1)
與曲線E交于不同的兩點(diǎn)M、N,當(dāng)
AM
AN
≥17
時(shí),求直線l的傾斜角θ的取值范圍.
分析:(Ⅰ)依題意可求A,B進(jìn)而可求拋物線E的方程
(Ⅱ)由
y=
k
(x-1)
y2=8x
得:kx2-(2k+8)x+k=0,由
△=(2k+8)2-4k2>0
k>0
可求k的范圍,再由
AM
AN
=(x1+2,y1)(x2+2,y2)=(x1+2)(x2+2)+y1y2
可求k的范圍,進(jìn)而可求θ的范圍
解答:解:(Ⅰ)依題意得:A(-2,0),B(2,0),
∴曲線E的方程為y2=8x.…(4分)
(Ⅱ)由
y=
k
(x-1)
y2=8x
得:kx2-(2k+8)x+k=0,
△=(2k+8)2-4k2>0
k>0
?k>0…(7分)
設(shè)M(x1,y1),N(x2,y2),則:x1+x2=
2k+8
k
,x1x2=1
,
AM
AN
=(x1+2,y1)(x2+2,y2)=(x1+2)(x2+2)+y1y2
…(9分)
=(k+1)x1x2+(2-k)(x1+x2)+4+k=
16
k
+1≥17

∴0<k≤1,∴θ∈(0,
π
4
]
.…(12分)
點(diǎn)評(píng):本題主要考查了利用拋物線的性質(zhì)求解拋物線的方程,直線與拋物線方程的相交的處理中,要注意方程的根與系數(shù)的關(guān)系的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x24
+y2=1
的左、右兩個(gè)頂點(diǎn)分別為A,B,直線x=t(-2<t<2)與橢圓相交于M,N兩點(diǎn),經(jīng)過(guò)三點(diǎn)A,M,N的圓與經(jīng)過(guò)三點(diǎn)B,M,N的圓分別記為圓C1與圓C2
(1)求證:無(wú)論t如何變化,圓C1與圓C2的圓心距是定值;
(2)當(dāng)t變化時(shí),求圓C1與圓C2的面積的和S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
4
+y2=1
,過(guò)E(1,0)作兩條直線AB與CD分別交橢圓于A,B,C,D四點(diǎn),已知kABkCD=-
1
4

(1)若AB的中點(diǎn)為M,CD的中點(diǎn)為N,求證:①kOMkON=-
1
4
為定值,并求出該定值;②直線MN過(guò)定點(diǎn),并求出該定點(diǎn);
(2)求四邊形ACBD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓
x2
4
+y2=1
,弦AB所在直線方程為:x+2y-2=0,現(xiàn)隨機(jī)向橢圓內(nèi)丟一粒豆子,則豆子落在圖中陰影范圍內(nèi)的概率為
π-2
π-2

(橢圓的面積公式S=π•a•b,其中a是橢圓長(zhǎng)半軸長(zhǎng),b是橢圓短半軸長(zhǎng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•朝陽(yáng)區(qū)三模)已知橢圓
x2
4
+y2=1
的焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上一點(diǎn),且∠F1PF2=90°,則點(diǎn)P的縱坐標(biāo)可以是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x24
+y2=1
,過(guò)點(diǎn)M(-1,0)作直線l交橢圓于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)求AB中點(diǎn)P的軌跡方程;
(2)求△OAB面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案