x>0時(shí),求f(x)=2x+的最小值.

答案:
解析:

  解:f(x)=2x+=x+x+≥3=3.

  當(dāng)且僅當(dāng)x=,即x=1時(shí),f(x)有最小值3.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+1成立,且當(dāng)x>0時(shí),f(x)>-1,f(1)=0.
(1)求f(5)的值;
(2)判斷f(x)在R上的單調(diào)性,并證明;
(3)若對(duì)于任意給定的正實(shí)數(shù)ε,總能找到一個(gè)正實(shí)數(shù)σ,使得當(dāng)|x-x0|<σ時(shí),|f(x)-f(x0)|<ε,則稱函數(shù)f(x)在x=x0處連續(xù).試證明:f(x)在x=0處連續(xù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)任意的x,y∈R,總有f(x)>0,f(x+y)=f(x)•f(y),且當(dāng)x<0時(shí),f(x)>1,f(-1)=2,
(1)求證f(x)在R上為減函數(shù);
(2)求f(x)在[-3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的解析式.
(1)已知f(x)=x2+2x,求f(2x+1)
(2)已知f(x)為二次函數(shù),且滿足f (0)=1,f(x+1)-f(x)=2x,求f(x)
(3)已知2f(
1x
)+f(x)=x(x≠0),求f(x)
(4)若f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x(2-x),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的定義域?yàn)镽,且對(duì)任意a,b∈R,都有f(a+b)=f(a)+f(b),且當(dāng)x>0時(shí),f(x)<0恒成立.
(1)證明函數(shù)y=f(x)是R上的單調(diào)性;
(2)討論函數(shù)y=f(x)的奇偶性;
(3)若f(x2-2)+f(x)<0,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案