平面向量
a
=(2,1),
b
=(m2,m),若“m=2”是“
a
b
共線”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)向量共線定義,結(jié)合充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:當(dāng)m=2時(shí),
a
=(2,1),
b
=(4,2)=2
a
,則
a
b
共線,充分性成立,
當(dāng)m=0時(shí),
b
=(0,0),滿足
a
b
共線,但m=2不成立,即必要性不成立,
故“m=2”是“
a
b
共線”的充分不必要條件,
故選:A
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)向量共線的等價(jià)條件是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

《爸爸去哪兒》有一期選擇住房,一排五套房子編號(hào)分別為1,2,3,4,5,五個(gè)家庭每家只能選擇一套房不能重復(fù),其中Kimi和王詩(shī)齡代表各自家庭選擇的住房編號(hào)相鄰,則選房方法總數(shù)為( 。
A、48B、120
C、240D、480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+2,x≤0
lnx,x>0
,若函數(shù)y=|f(x)|-k(x+e2)的零點(diǎn)恰有四個(gè),則實(shí)數(shù)k的值為( 。
A、e
B、
1
e
C、e2
D、
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三角形ABC中,a=2,A=30°,C=45°,則三角形的面積S的值是( 。
A、
2
B、
3
+1
C、
1
2
3
+1)
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-1-log
1
2
x,則f(x)的零點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,正確的是 ( 。
A、已知命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0,則命題“p∧¬q”是真命題
B、已知ξ服從正態(tài)分布N(0,ξ2),且P(-2≤ξ≤2)=0.4,則P(ξ>2)=0.3
C、設(shè)回歸直線方程為y=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),y平均增加2個(gè)單位
D、已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司為了實(shí)現(xiàn)2015年1000萬(wàn)元利潤(rùn)的目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案:銷(xiāo)售利潤(rùn)達(dá)到10萬(wàn)元時(shí),按銷(xiāo)售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金數(shù)額y(單位:萬(wàn)元)隨銷(xiāo)售利潤(rùn)x(單位:萬(wàn)元)的增加而增加,但獎(jiǎng)金數(shù)額不超過(guò)5萬(wàn)元,同時(shí)獎(jiǎng)金數(shù)額不超過(guò)利潤(rùn)的25%,現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:y1=0.025x,y2=1.003x,y3=log7x+1,問(wèn)其中是否有模型能完全符合公司的要求?說(shuō)明理由.(參考數(shù)據(jù):1.003600≈6,74=2401)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax+1.
(Ⅰ)若曲線y=f(x)在點(diǎn)A(1,f(1))處的切線l與直線4x+3y-3=0垂直,求實(shí)數(shù)a的值;
(Ⅱ)若f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:ln(n+1)>
1
2
+
1
3
+…+
1
n+1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3+2
3
sinx•cosx+2cosx2
(1)若f(α)=5,求tanα的值;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且(2a-c)•cosB-b•cosC=0,求函數(shù)f(x)在(0,B]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案