分析 根據(jù)題意得出一元二次方程x2-5x+a=0,有△≤0或$\left\{\begin{array}{l}{△>0}\\{{|x}_{1}{-x}_{2}|≤7}\end{array}\right.$;由此求出a的取值范圍即可.
解答 解:由題意知,對于一元二次方程x2-5x+a=0,
有△≤0①,或$\left\{\begin{array}{l}{△>0}\\{{|x}_{1}{-x}_{2}|≤7}\end{array}\right.$②;
由①得25-4a≤0,解得a≥$\frac{25}{4}$;
由②得$\left\{\begin{array}{l}{25-4a>0}\\{{{(x}_{1}{+x}_{2})}^{2}-{{4x}_{1}x}_{2}≤49}\end{array}\right.$,
即$\left\{\begin{array}{l}{a<\frac{25}{4}}\\{25-4a≤49}\end{array}\right.$,
解得-6≤a<$\frac{25}{4}$;
綜上,a的取值范圍是a≥-6;
即C={a|a≥-6}.
點評 本題考查了集合的運算問題,也考查了不等式的解法與應用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{10}$ | B. | 6 | C. | 3$\sqrt{3}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com