數(shù)列的前項和為,,等差數(shù)列滿足

(1)分別求數(shù)列,的通項公式;      

(2)設,求證

 

【答案】

(1)(2)因為 ,所以

 ,所以

【解析】

試題分析:(1)由 -①    得 -②,

②得,                2分

;                                3分

                         4分

                                 6分

(2)因為                           8分

所以                              9分

所以                        10分

                          11分

所以                                12分

考點:本題考查了數(shù)列通項公式及前n項和

點評:數(shù)列的通項公式及應用是數(shù)列的重點內(nèi)容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學生的理性思維,這是近幾年新課標高考對數(shù)列考查的一個亮點,也是一種趨勢.隨著新課標實施的深入,高考關注的重點為等差、等比數(shù)列的通項公式,錯位相減法、裂項相消法等求數(shù)列的前n項的和等等

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項a1=3,設數(shù)列的前項和為Sn,且
1
a1
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式及Sn
(II)求An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列的前項和為,公差成等比數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若從數(shù)列中依次取出第2項、第4項、第8項,……,,……,按原來順序組成一個新數(shù)列,記該數(shù)列的前項和為,求的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆北京市東城區(qū)示范校高三第二學期綜合練習數(shù)學文卷 題型:解答題

(本小題14分)已知數(shù)列為等差數(shù)列,,,數(shù)列的前項和為,且有
(1)求、的通項公式;
(2)若的前項和為,求
(3)試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年湖南省瀏陽一中高二上學期第一次質(zhì)檢數(shù)學理卷 題型:解答題

(本小題14分)
數(shù)列的前項和為,且對都有,則:
(1)求數(shù)列的前三項
(2)根據(jù)上述結果,歸納猜想數(shù)列的通項公式,并用數(shù)學歸納法加以證明.
(3)求證:對任意都有.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東佛山南海普通高中高三8月質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:解答題

數(shù)列的前項和為,且的等差中項,等差數(shù)列滿足,.

(1)求數(shù)列、的通項公式;

(2)設,數(shù)列的前項和為,證明:.

 

查看答案和解析>>

同步練習冊答案