已知命題p:方程表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線的離心率,若p、q有且只有一個(gè)為真,求m的取值范圍。
解:將方程改寫(xiě)為,
只有當(dāng)時(shí),方程表示的曲線是焦點(diǎn)在y軸上的橢圓,所以命題p等價(jià)于;因?yàn)殡p曲線的離心率
所以,且1,解得,
所以命題q等價(jià)于;若p真q假,則
若p假q真,則
綜上:的取值范圍為
本試題主要考查了橢圓的方程,以及雙曲線的幾何性質(zhì)的綜合運(yùn)用,并運(yùn)用命題的真假關(guān)系,來(lái)確定參數(shù)m的取值范圍。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)是
(1)求此橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)點(diǎn)P在此橢圓上,且有的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

與橢圓有公共焦點(diǎn),且離心率的雙曲線的方程是
A.B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形ABMN中,∠NAB=90°,AN∥BM,AB=2,AN=,BM=,橢圓C以A,B為焦點(diǎn)且過(guò)點(diǎn)N.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓C方程;
(2)若點(diǎn)E滿足,問(wèn)是否存在不平行AB的直線L與橢圓C交于P,Q兩點(diǎn),且|PE|=|QE|,若存在,求出直線L與AB夾角的范圍;若不存在,說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓點(diǎn),橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接PB交隨圓C于另一點(diǎn)E,證明直線AE與x軸相交于定點(diǎn)Q;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓.,分別為橢圓的左,右焦點(diǎn),, 分別為橢圓的左,右頂點(diǎn).過(guò)右焦點(diǎn)且垂直于軸的直線與橢圓在第一象限的交點(diǎn)為.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 直線與橢圓交于,兩點(diǎn), 直線交于點(diǎn).當(dāng)直線變化時(shí), 點(diǎn)是否恒在一條定直線上?若是,求此定直線方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,一個(gè)焦點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線交橢圓,兩點(diǎn),若點(diǎn),都在以點(diǎn)為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓C:=1的左.右焦點(diǎn)為,離心率為,直線與x軸、y軸分別交于點(diǎn),是直線與橢圓C的一個(gè)公共點(diǎn),是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),設(shè)
(Ⅰ)證明:; (Ⅱ)確定的值,使得是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

. (本小題滿分12分)
如圖,設(shè)拋物線C1:的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F2為焦點(diǎn),離心率的橢圓C2與拋物線C1在X軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(I)當(dāng)m =1時(shí),求橢圓C2的方程;
(II)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案