如圖,在四棱錐P-ABCD中,已知ABCD為正方形,且PA⊥平面ABCD,PA=2AB.
(I)證明:PC⊥BD;
(II)求PB與平面PAC所成的角的正弦值.
分析:(I)證明BD⊥PC,利用三垂線定理,即可證得;
(II)判斷BO⊥面PAC,可得∠BPO為直線PB與平面PAC所成的角,利用正弦函數(shù)即可求得.
解答:(I)證明:∵PA⊥平面ABCD,
∴PC在底面上的射影為AC
∵ABCD為正方形,∴BD⊥AC
∴BD⊥PC;
(II)解:設(shè)正方形的中心為O.
∵BO⊥AC,BO⊥PA,AC∩PA=A
∴BO⊥面PAC,∴∠BPO為直線PB與平面PAC所成的角.
設(shè)AB=1,則PA=2,BO=
2
2
PB=
5

sin∠BPO=
10
10

即所求直線PB與平面PAC所成的角的正弦值為
10
10
點(diǎn)評(píng):本題考查線線垂直,考查線面角,正確作出線面角是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案